問題描述
PIMPL 代表 Pointer 到 IMPLmentation.實現代表實現細節":類的用戶不需要關心的東西.
Qt 自己的類實現通過使用 PIMPL 習語將接口與實現清晰地分開.然而,Qt 提供的機制沒有記錄.如何使用它們?
我希望這是 Qt 中關于我如何 PIMPL"的規范問題.答案是由一個簡單的坐標輸入對話框界面激發的,如下所示.
當我們有一個半復雜的實現時,使用 PIMPL 的動機就變得很明顯了..
界面
我們現在將在問題中解釋基于 PIMPL 的 CoordinateDialog
接口.
Qt 提供了幾個宏和實現助手,可以減少 PIMPL 的苦差事.實現要求我們遵循以下規則:
Foo
類的 PIMPL 被命名為FooPrivate
.- PIMPL 在接口(頭文件)文件中與
Foo
類的聲明一起前向聲明.
Q_DECLARE_PRIVATE 宏
Q_DECLARE_PRIVATE
宏必須放在類聲明的 private
部分.它將接口類的名稱作為參數.它聲明了 d_func()
輔助方法的兩個內聯實現.該方法返回具有適當常量的 PIMPL 指針.在 const 方法中使用時,它返回一個指向 const PIMPL 的指針.在非常量方法中,它返回一個指向非常量 PIMPL 的指針.它還在派生類中提供了正確類型的 pimpl.因此,從實現內部對 pimpl 的所有訪問都將使用 d_func()
和 ** 而不是通過 d_ptr
完成.通常我們會使用 Q_D
宏,如下面的實現部分所述.
宏有兩種形式:
Q_DECLARE_PRIVATE(Class)//假設 PIMPL 指針命名為 d_ptrQ_DECLARE_PRIVATE_D(Dptr, Class)//顯式采用 PIMPL 指針名稱
在我們的例子中,Q_DECLARE_PRIVATE(CoordinateDialog)
等價于 Q_DECLARE_PRIVATE_D(d_ptr, CoordinateDialog)
.
Q_PRIVATE_SLOT 宏
此宏僅在與 Qt 4 兼容或面向非 C++11 編譯器時才需要.對于 Qt 5、C++11 代碼,這是不必要的,因為我們可以將函子連接到信號并且不需要顯式私有槽.
我們有時需要 QObject
來擁有供內部使用的私有插槽.這樣的插槽會污染接口的私有部分.由于插槽信息僅與 moc 代碼生成器相關,因此我們可以使用 Q_PRIVATE_SLOT
宏來告訴 moc 通過 d_func()
指針,而不是通過 this
.
Q_PRIVATE_SLOT
中 moc 預期的語法是:
Q_PRIVATE_SLOT(instance_pointer, 方法簽名)
在我們的例子中:
Q_PRIVATE_SLOT(d_func(), void onAccepted())
這有效地聲明了 CoordinateDialog
類上的 onAccepted
槽.moc 生成以下代碼來調用插槽:
d_func()->onAccepted()
宏本身有一個空擴展 - 它只向 moc 提供信息.
我們的接口類因此擴展如下:
class CoordinateDialog : public QDialog{Q_OBJECT/* 我們不在這里展開它,因為它是題外話.*///Q_DECLARE_PRIVATE(CoordinateDialog)內聯 CoordinateDialogPrivate* d_func() {return reinterpret_cast(qGetPtrHelper(d_ptr));}內聯 const CoordinateDialogPrivate* d_func() const {return reinterpret_cast(qGetPtrHelper(d_ptr));}朋友類 CoordinateDialogPrivate;//Q_PRIVATE_SLOT(d_func(), void onAccepted())//(空的)QScopedPointerconst d_ptr;民眾:[...]};
使用這個宏時,必須在私有類完全定義的地方包含moc生成的代碼.在我們的例子中,這意味著 CoordinateDialog.cpp
文件應該結束:
#include "moc_CoordinateDialog.cpp";
問題
要在類聲明中使用的所有
Q_
宏都已包含分號.Q_
后不需要明確的分號://正確//冗長,有雙分號類 Foo : 公共 QObject { 類 Foo : 公共 QObject {Q_OBJECT Q_OBJECT;Q_DECLARE_PRIVATE(...) Q_DECLARE_PRIVATE(...);……};};
PIMPL 不得是
Foo
自身內的私有類://正確//錯誤類 FooPrivate;類 Foo {類 Foo { 類 FooPrivate;……};};
默認情況下,類聲明中左大括號之后的第一部分是私有的.因此以下是等價的:
//少啰嗦,首選//冗長類 Foo { 類 Foo {內部私人會員;私人的:內部私人會員;};};
Q_DECLARE_PRIVATE
需要接口類的名稱,而不是 PIMPL 的名稱://正確//錯誤類 Foo { 類 Foo {Q_DECLARE_PRIVATE(Foo) Q_DECLARE_PRIVATE(FooPrivate)……};};
對于不可復制/不可分配的類,例如
QObject
,PIMPL 指針應該是常量.在實現可復制類時,它可以是非常量.由于 PIMPL 是一個內部實現細節,它的大小在使用該接口的站點上是不可用的.應該抵制使用placement new 和Fast Pimpl 習語的誘惑,因為它沒有任何好處除了一個根本不分配內存的類.
實施
PIMPL 必須在實現文件中定義.如果它很大,也可以定義在一個私有頭文件中,對于接口在foo.h
中的類,通常命名為foo_p.h
.
PIMPL 至少只是主類數據的載體.它只需要一個構造函數,不需要其他方法.在我們的例子中,它還需要存儲指向主類的指針,因為我們希望從主類發出信號.因此:
//CordinateDialog.cpp#include #include #include 類 CoordinateDialogPrivate {Q_DISABLE_COPY(CoordinateDialogPrivate)Q_DECLARE_PUBLIC(坐標對話框)CoordinateDialog * const q_ptr;QFormLayout布局;QDoubleSpinBox x, y, z;QDialogBu??ttonBox 按鈕;QVector3D 坐標;無效 onAccepted();CoordinateDialogPrivate(CoordinateDialog*);};
PIMPL 不可復制.由于我們使用不可復制的成員,任何復制或分配給 PIMPL 的嘗試都會被編譯器捕獲.通常,最好使用 Q_DISABLE_COPY
顯式禁用復制功能.
Q_DECLARE_PUBLIC
宏的工作方式與 Q_DECLARE_PRIVATE
類似.本節稍后將對其進行描述.
我們將指向對話框的指針傳遞給構造函數,允許我們在對話框上初始化布局.我們還將 QDialog
的接受信號連接到內部 onAccepted
槽.
CoordinateDialogPrivate::CoordinateDialogPrivate(CoordinateDialog * dialog) :q_ptr(對話框),布局(對話框),按鈕(QDialogBu??ttonBox::Ok | QDialogBu??ttonBox::Cancel){layout.addRow(X", &x);layout.addRow(Y", &y);layout.addRow(Z", &z);layout.addRow(&buttons);dialog->connect(&buttons, SIGNAL(accepted()), SLOT(accept()));dialog->connect(&buttons, SIGNAL(rejected()), SLOT(reject()));#if QT_VERSION <= QT_VERSION_CHECK(5,0,0)this->connect(dialog, SIGNAL(accepted()), SLOT(onAccepted()));#別的QObject::connect(dialog, &QDialog::accepted, [this]{ onAccepted(); });#萬一}
onAccepted()
PIMPL 方法需要作為 Qt 4/非 C++11 項目中的插槽公開.對于 Qt 5 和 C++11,這不再是必要的.
在接受對話后,我們捕獲坐標并發出acceptedCoordinates
信號.這就是為什么我們需要公共指針:
void CoordinateDialogPrivate::onAccepted() {Q_Q(坐標對話框);坐標.setX(x.value());坐標.setY(y.value());坐標.setZ(z.value());發出 q->acceptedCoordinates(coordinates);}
Q_Q
宏聲明了一個本地 CoordinateDialog * const q
變量.本節稍后將對其進行描述.
實現的公共部分構造 PIMPL 并公開其屬性:
CoordinateDialog::CoordinateDialog(QWidget * parent, Qt::WindowFlags flags) :QDialog(父,標志),d_ptr(新的 CoordinateDialogPrivate(this)){}QVector3D CoordinateDialog::coordinates() const {Q_D(const CoordinateDialog);返回 d-> 坐標;}CoordinateDialog::~CoordinateDialog() {}
Q_D
宏聲明了一個本地 CoordinateDialogPrivate * const d
變量.描述如下.
Q_D 宏
要在 interface 方法中訪問 PIMPL,我們可以使用 Q_D
宏,將接口類的名稱傳遞給它.
void Class::foo()/* 非常量 */{Q_D(類);/* 需要一個分號!*///擴展為ClassPrivate * const d = d_func();...
要在 const interface 方法中訪問 PIMPL,我們需要在類名前加上 const
關鍵字:
void Class::bar() const {Q_D(const 類);//擴展為const ClassPrivate * const d = d_func();...
Q_Q 宏
要從非常量 PIMPL 方法訪問接口實例,我們可以使用 Q_Q
宏,將接口類的名稱傳遞給它.
void ClassPrivate::foo()/* 非常量*/{Q_Q(班級);/* 需要一個分號!*///擴展為類 * const q = q_func();...
為了在 const PIMPL 方法中訪問接口實例,我們在類名前加上 const
關鍵字,就像我們對 Q_D所做的一樣代碼>宏:
void ClassPrivate::foo() const {Q_Q(const 類);/* 需要一個分號!*///擴展為const 類 * const q = q_func();...
Q_DECLARE_PUBLIC 宏
這個宏是可選的,用于允許從 PIMPL 訪問接口.如果 PIMPL 的方法需要操作接口的基類或發出其信號,則通常使用它.等效的 Q_DECLARE_PRIVATE
宏用于允許從界面訪問 PIMPL.
宏將接口類的名稱作為參數.它聲明了 q_func()
輔助方法的兩個內聯實現.該方法返回具有適當常量的接口指針.在 const 方法中使用時,它返回一個指向 const 接口的指針.在非常量方法中,它返回一個指向非常量接口的指針.它還在派生類中提供正確類型的接口.因此,從 PIMPL 內部對接口的所有訪問都將使用 q_func()
和 ** 而不是通過 q_ptr
完成.通常我們會使用 Q_Q
宏,如上所述.
宏期望指向接口的指針命名為q_ptr
.這個宏沒有允許為接口指針選擇不同名稱的兩個參數變體(如 Q_DECLARE_PRIVATE
的情況).
宏展開如下:
class CoordinateDialogPrivate {//Q_DECLARE_PUBLIC(CoordinateDialog)內聯 CoordinateDialog* q_func() {return static_cast(q_ptr);}內聯 const CoordinateDialog* q_func() const {return static_cast(q_ptr);}朋友類 CoordinateDialog;//CoordinateDialog * const q_ptr;...};
Q_DISABLE_COPY 宏
這個宏刪除了復制構造函數和賦值運算符.它必須出現在 PIMPL 的私有部分.
常見問題
給定類的 interface 標頭必須是要包含在實現文件中的第一個標頭.這強制標頭是自包含的,而不依賴于碰巧包含在實現中的聲明.如果不是這樣,實現將無法編譯,允許您修復接口以使其自給自足.
//正確//容易出錯//Foo.cpp//Foo.cpp#include Foo.h"#include <SomethingElse>#include <SomethingElse>#include Foo.h"http://現在是Foo.h"可以不依賴其他東西//我們意識到這個事實.
Q_DISABLE_COPY
宏必須出現在 PIMPL 的私有部分//正確//錯誤//Foo.cpp//Foo.cpp類 FooPrivate { 類 FooPrivate {Q_DISABLE_COPY(FooPrivate) 公開:... Q_DISABLE_COPY(FooPrivate)};...};
PIMPL 和非 QObject 可復制類
PIMPL 習慣用法允許實現可復制、可復制和可移動構造、可分配的對象.分配是通過 copy-and-swap 成語完成的,防止代碼重復.PIMPL 指針當然不能是常量.
在 C++11 中,我們需要注意四規則,并提供所有 以下內容:復制構造函數、移動構造函數、賦值運算符和析構函數.還有獨立的 swap
函數來實現這一切,當然?.
我們將使用一個相當無用但仍然正確的例子來說明這一點.
界面
//Integer.h#include <算法>#include 類IntegerPrivate;類整數{Q_DECLARE_PRIVATE(整數)QScopedPointerd_ptr;民眾:整數();整數(int);整數(常量整數和其他);整數(整數&&其他);運算符 int&();運算符 int() const;整數 &運算符=(整數其他);朋友無效交換(整數和第一,整數和第二)/* nothrow */;~整數();};
為了性能,移動構造函數和賦值運算符應該在接口(頭)文件中定義.他們不需要直接訪問 PIMPL:
Integer::Integer(Integer && other) : Integer() {交換(*這個,其他);}整數 &整數::運算符=(整數其他){交換(*這個,其他);返回 *this;}
所有這些都使用 swap
獨立函數,我們也必須在接口中定義它.注意是
void swap(Integer& first, Integer& second)/* nothrow */{使用 std::swap;交換(第一個.d_ptr,第二個.d_ptr);}
實施
這很簡單.我們不需要從 PIMPL 訪問接口,因此 Q_DECLARE_PUBLIC
和 q_ptr
不存在.
//Integer.cpp#include Integer.h"類整數私有{民眾:整數值;IntegerPrivate(int i) : value(i) {}};Integer::Integer() : d_ptr(new IntegerPrivate(0)) {}Integer::Integer(int i) : d_ptr(new IntegerPrivate(i)) {}Integer::Integer(const Integer &other) :d_ptr(new IntegerPrivate(other.d_func()->value)) {}Integer::operator int&() { return d_func()->value;}Integer::operator int() const { return d_func()->value;}整數::~整數() {}
?Per 這個很好的答案:還有其他說法我們應該為我們的類型專門化 std::swap
,提供一個類內 swap
以及一個自由函數 swap
,等等.但是這都是不必要的:任何 swap
的正確使用都將通過不合格的調用,我們的函數將通過 ADL.一個功能就行.
PIMPL stands for Pointer to IMPLementation. The implementation stands for "implementation detail": something that the users of the class need not to be concerned with.
Qt's own class implementations cleanly separate out the interfaces from the implementations through the use of the PIMPL idiom. Yet, the mechanisms provided by Qt are undocumented. How to use them?
I'd like this to be the canonical question about "how do I PIMPL" in Qt. The answers are to be motivated by a simple coordinate entry dialog interface shown below.
The motivation for the use of PIMPL becomes apparent when we have anything with a semi-complex implementation. Further motivation is given in this question. Even a fairly simple class has to pull in a lot of other headers in its interface.
The PIMPL-based interface is fairly clean and readable.
// CoordinateDialog.h
#include <QDialog>
#include <QVector3D>
class CoordinateDialogPrivate;
class CoordinateDialog : public QDialog
{
Q_OBJECT
Q_DECLARE_PRIVATE(CoordinateDialog)
#if QT_VERSION <= QT_VERSION_CHECK(5,0,0)
Q_PRIVATE_SLOT(d_func(), void onAccepted())
#endif
QScopedPointer<CoordinateDialogPrivate> const d_ptr;
public:
CoordinateDialog(QWidget * parent = 0, Qt::WindowFlags flags = 0);
~CoordinateDialog();
QVector3D coordinates() const;
Q_SIGNAL void acceptedCoordinates(const QVector3D &);
};
Q_DECLARE_METATYPE(QVector3D)
A Qt 5, C++11 based interface doesn't need the Q_PRIVATE_SLOT
line.
Compare that to a non-PIMPL interface that tucks implementation details into the private section of the interface. Note how much other code has to be included.
// CoordinateDialog.h
#include <QDialog>
#include <QVector3D>
#include <QFormLayout>
#include <QDoubleSpinBox>
#include <QDialogButtonBox>
class CoordinateDialog : public QDialog
{
QFormLayout m_layout;
QDoubleSpinBox m_x, m_y, m_z;
QVector3D m_coordinates;
QDialogButtonBox m_buttons;
Q_SLOT void onAccepted();
public:
CoordinateDialog(QWidget * parent = 0, Qt::WindowFlags flags = 0);
QVector3D coordinates() const;
Q_SIGNAL void acceptedCoordinates(const QVector3D &);
};
Q_DECLARE_METATYPE(QVector3D)
Those two interfaces are exactly equivalent as far as their public interface is concerned. They have the same signals, slots and public methods.
Introduction
The PIMPL is a private class that contains all of the implementation-specific data of the parent class. Qt provides a PIMPL framework and a set of conventions that need to be followed when using that framework. Qt's PIMPLs can be used in all classes, even those not derived from QObject
.
The PIMPL needs to be allocated on the heap. In idiomatic C++, we must not manage such storage manually, but use a smart pointer. Either QScopedPointer
or std::unique_ptr
work for this purpose. Thus, a minimal pimpl-based interface, not derived from QObject
, might look like:
// Foo.h
#include <QScopedPointer>
class FooPrivate; ///< The PIMPL class for Foo
class Foo {
QScopedPointer<FooPrivate> const d_ptr;
public:
Foo();
~Foo();
};
The destructor's declaration is necessary, since the scoped pointer's destructor needs to destruct an instance of the PIMPL. The destructor must be generated in the implementation file, where the FooPrivate
class lives:
// Foo.cpp
class FooPrivate { };
Foo::Foo() : d_ptr(new FooPrivate) {}
Foo::~Foo() {}
See also:
- A deeper exposition of the idiom.
- Gotchas and pitfalls of PIMPL.
The Interface
We'll now explain the PIMPL-based CoordinateDialog
interface in the question.
Qt provides several macros and implementation helpers that reduce the drudgery of PIMPLs. The implementation expects us to follow these rules:
- The PIMPL for a class
Foo
is namedFooPrivate
. - The PIMPL is forward-declared along the declaration of the
Foo
class in the interface (header) file.
The Q_DECLARE_PRIVATE Macro
The Q_DECLARE_PRIVATE
macro must be put in the private
section of the class's declaration. It takes the interface class's name as a parameter. It declares two inline implementations of the d_func()
helper method. That method returns the PIMPL pointer with proper constness. When used in const methods, it returns a pointer to a const PIMPL. In non-const methods, it returns a pointer to a non-const PIMPL. It also provides a pimpl of correct type in derived classes. It follows that all access to the pimpl from within the implementation is to be done using d_func()
and **not through d_ptr
. Usually we'd use the Q_D
macro, described in the Implementation section below.
The macro comes in two flavors:
Q_DECLARE_PRIVATE(Class) // assumes that the PIMPL pointer is named d_ptr
Q_DECLARE_PRIVATE_D(Dptr, Class) // takes the PIMPL pointer name explicitly
In our case, Q_DECLARE_PRIVATE(CoordinateDialog)
is equivalent to Q_DECLARE_PRIVATE_D(d_ptr, CoordinateDialog)
.
The Q_PRIVATE_SLOT Macro
This macro is only needed for Qt 4 compatibility, or when targeting non-C++11 compilers. For Qt 5, C++11 code, it is unnecessary, as we can connect functors to signals and there's no need for explicit private slots.
We sometimes need for a QObject
to have private slots for internal use. Such slots would pollute the interface's private section. Since the information about slots is only relevant to the moc code generator, we can, instead, use the Q_PRIVATE_SLOT
macro to tell moc that a given slot is to be invoked through the d_func()
pointer, instead of through this
.
The syntax expected by moc in the Q_PRIVATE_SLOT
is:
Q_PRIVATE_SLOT(instance_pointer, method signature)
In our case:
Q_PRIVATE_SLOT(d_func(), void onAccepted())
This effectively declares an onAccepted
slot on the CoordinateDialog
class. The moc generates the following code to invoke the slot:
d_func()->onAccepted()
The macro itself has an empty expansion - it only provides information to moc.
Our interface class is thus expanded as follows:
class CoordinateDialog : public QDialog
{
Q_OBJECT /* We don't expand it here as it's off-topic. */
// Q_DECLARE_PRIVATE(CoordinateDialog)
inline CoordinateDialogPrivate* d_func() {
return reinterpret_cast<CoordinateDialogPrivate *>(qGetPtrHelper(d_ptr));
}
inline const CoordinateDialogPrivate* d_func() const {
return reinterpret_cast<const CoordinateDialogPrivate *>(qGetPtrHelper(d_ptr));
}
friend class CoordinateDialogPrivate;
// Q_PRIVATE_SLOT(d_func(), void onAccepted())
// (empty)
QScopedPointer<CoordinateDialogPrivate> const d_ptr;
public:
[...]
};
When using this macro, you must include the moc-generated code in a place where the private class is fully defined. In our case, this means that the CoordinateDialog.cpp
file should end with:
#include "moc_CoordinateDialog.cpp"
Gotchas
All of the
Q_
macros that are to be used in a class declaration already include a semicolon. No explicit semicolons are needed afterQ_
:// correct // verbose, has double semicolons class Foo : public QObject { class Foo : public QObject { Q_OBJECT Q_OBJECT; Q_DECLARE_PRIVATE(...) Q_DECLARE_PRIVATE(...); ... ... }; };
The PIMPL must not be a private class within
Foo
itself:// correct // wrong class FooPrivate; class Foo { class Foo { class FooPrivate; ... ... }; };
The first section after the opening brace in a class declaration is private by default. Thus the following are equivalent:
// less wordy, preferred // verbose class Foo { class Foo { int privateMember; private: int privateMember; }; };
The
Q_DECLARE_PRIVATE
expects the interface class's name, not the PIMPL's name:// correct // wrong class Foo { class Foo { Q_DECLARE_PRIVATE(Foo) Q_DECLARE_PRIVATE(FooPrivate) ... ... }; };
The PIMPL pointer should be const for non-copyable/non-assignable classes such as
QObject
. It can be non-const when implementing copyable classes.Since the PIMPL is an internal implementation detail, its size is not available at the site where the interface is used. The temptation to use placement new and the Fast Pimpl idiom should be resisted as it provides no benefits for anything but a class that doesn't allocate memory at all.
The Implementation
The PIMPL has to be defined in the implementation file. If it is large, it can also be defined in a private header, customarily named foo_p.h
for a class whose interface is in foo.h
.
The PIMPL, at a minimum, is merely a carrier of the main class's data. It only needs a constructor and no other methods. In our case, it also needs to store the pointer to the main class, as we'll want to emit a signal from the main class. Thus:
// CordinateDialog.cpp
#include <QFormLayout>
#include <QDoubleSpinBox>
#include <QDialogButtonBox>
class CoordinateDialogPrivate {
Q_DISABLE_COPY(CoordinateDialogPrivate)
Q_DECLARE_PUBLIC(CoordinateDialog)
CoordinateDialog * const q_ptr;
QFormLayout layout;
QDoubleSpinBox x, y, z;
QDialogButtonBox buttons;
QVector3D coordinates;
void onAccepted();
CoordinateDialogPrivate(CoordinateDialog*);
};
The PIMPL is not copyable. Since we use non-copyable members, any attempt to copy or assign to the PIMPL would be caught by the compiler. Generally, it's best to explicitly disable the copy functionality by using Q_DISABLE_COPY
.
The Q_DECLARE_PUBLIC
macro works similarly to Q_DECLARE_PRIVATE
. It is described later in this section.
We pass the pointer to the dialog into the constructor, allowing us to initialize the layout on the dialog. We also connect the QDialog
's accepted signal to the internal onAccepted
slot.
CoordinateDialogPrivate::CoordinateDialogPrivate(CoordinateDialog * dialog) :
q_ptr(dialog),
layout(dialog),
buttons(QDialogButtonBox::Ok | QDialogButtonBox::Cancel)
{
layout.addRow("X", &x);
layout.addRow("Y", &y);
layout.addRow("Z", &z);
layout.addRow(&buttons);
dialog->connect(&buttons, SIGNAL(accepted()), SLOT(accept()));
dialog->connect(&buttons, SIGNAL(rejected()), SLOT(reject()));
#if QT_VERSION <= QT_VERSION_CHECK(5,0,0)
this->connect(dialog, SIGNAL(accepted()), SLOT(onAccepted()));
#else
QObject::connect(dialog, &QDialog::accepted, [this]{ onAccepted(); });
#endif
}
The onAccepted()
PIMPL method needs to be exposed as a slot in Qt 4/non-C++11 projects. For Qt 5 and C++11, this is no longer necessary.
Upon the acceptance of the dialog, we capture the coordinates and emit the acceptedCoordinates
signal. That's why we need the public pointer:
void CoordinateDialogPrivate::onAccepted() {
Q_Q(CoordinateDialog);
coordinates.setX(x.value());
coordinates.setY(y.value());
coordinates.setZ(z.value());
emit q->acceptedCoordinates(coordinates);
}
The Q_Q
macro declares a local CoordinateDialog * const q
variable. It is described later in this section.
The public part of the implementation constructs the PIMPL and exposes its properties:
CoordinateDialog::CoordinateDialog(QWidget * parent, Qt::WindowFlags flags) :
QDialog(parent, flags),
d_ptr(new CoordinateDialogPrivate(this))
{}
QVector3D CoordinateDialog::coordinates() const {
Q_D(const CoordinateDialog);
return d->coordinates;
}
CoordinateDialog::~CoordinateDialog() {}
The Q_D
macro declares a local CoordinateDialogPrivate * const d
variable. It is described below.
The Q_D Macro
To access the PIMPL in an interface method, we can use the Q_D
macro, passing it the name of the interface class.
void Class::foo() /* non-const */ {
Q_D(Class); /* needs a semicolon! */
// expands to
ClassPrivate * const d = d_func();
...
To access the PIMPL in a const interface method, we need to prepend the class name with the const
keyword:
void Class::bar() const {
Q_D(const Class);
// expands to
const ClassPrivate * const d = d_func();
...
The Q_Q Macro
To access the interface instance from a non-const PIMPL method, we can use the Q_Q
macro, passing it the name of the interface class.
void ClassPrivate::foo() /* non-const*/ {
Q_Q(Class); /* needs a semicolon! */
// expands to
Class * const q = q_func();
...
To access the interface instance in a const PIMPL method, we prepend the class name with the const
keyword, just as we did for the Q_D
macro:
void ClassPrivate::foo() const {
Q_Q(const Class); /* needs a semicolon! */
// expands to
const Class * const q = q_func();
...
The Q_DECLARE_PUBLIC Macro
This macro is optional and is used to allow access to the interface from the PIMPL. It is typically used if the PIMPL's methods need to manipulate the interface's base class, or emit its signals. The equivalent Q_DECLARE_PRIVATE
macro was used to allow access to the PIMPL from the interface.
The macro takes the interface class's name as a parameter. It declares two inline implementations of the q_func()
helper method. That method returns the interface pointer with proper constness. When used in const methods, it returns a pointer to a const interface. In non-const methods, it returns a pointer to a non-const interface. It also provides the interface of correct type in derived classes. It follows that all access to the interface from within the PIMPL is to be done using q_func()
and **not through q_ptr
. Usually we'd use the Q_Q
macro, described above.
The macro expects the pointer to the interface to be named q_ptr
. There is no two-argument variant of this macro that would allow to choose a different name for the interface pointer (as was the case for Q_DECLARE_PRIVATE
).
The macro expands as follows:
class CoordinateDialogPrivate {
//Q_DECLARE_PUBLIC(CoordinateDialog)
inline CoordinateDialog* q_func() {
return static_cast<CoordinateDialog*>(q_ptr);
}
inline const CoordinateDialog* q_func() const {
return static_cast<const CoordinateDialog*>(q_ptr);
}
friend class CoordinateDialog;
//
CoordinateDialog * const q_ptr;
...
};
The Q_DISABLE_COPY Macro
This macro deletes the copy constructor and the assignment operator. It must appear in the private section of the PIMPL.
Common Gotchas
The interface header for a given class must be the first header to be included in the implementation file. This forces the header to be self-contained and not dependent on declarations that happen to be included in the implementation. If it isn't so, the implementation will fail to compile, allowing you to fix the interface to make it self-sufficient.
// correct // error prone // Foo.cpp // Foo.cpp #include "Foo.h" #include <SomethingElse> #include <SomethingElse> #include "Foo.h" // Now "Foo.h" can depend on SomethingElse without // us being aware of the fact.
The
Q_DISABLE_COPY
macro must appear in the private section of the PIMPL// correct // wrong // Foo.cpp // Foo.cpp class FooPrivate { class FooPrivate { Q_DISABLE_COPY(FooPrivate) public: ... Q_DISABLE_COPY(FooPrivate) }; ... };
PIMPL And Non-QObject Copyable Classes
The PIMPL idiom allows one to implement copyable, copy- and move- constructible, assignable object. The assignment is done through the copy-and-swap idiom, preventing code duplication. The PIMPL pointer must not be const, of course.
In C++11, we need to heed the Rule of Four, and provide all of the following: the copy constructor, move constructor, assignment operator, and destructor. And the free-standing swap
function to implement it all, of course?.
We'll illustrate this using a rather useless, but nevertheless correct example.
Interface
// Integer.h
#include <algorithm>
#include <QScopedPointer>
class IntegerPrivate;
class Integer {
Q_DECLARE_PRIVATE(Integer)
QScopedPointer<IntegerPrivate> d_ptr;
public:
Integer();
Integer(int);
Integer(const Integer & other);
Integer(Integer && other);
operator int&();
operator int() const;
Integer & operator=(Integer other);
friend void swap(Integer& first, Integer& second) /* nothrow */;
~Integer();
};
For performance, the move constructor and the assignment operator should be defined in the interface (header) file. They don't need to access the PIMPL directly:
Integer::Integer(Integer && other) : Integer() {
swap(*this, other);
}
Integer & Integer::operator=(Integer other) {
swap(*this, other);
return *this;
}
All of those use the swap
freestanding function, which we must define in the interface as well. Note that it is
void swap(Integer& first, Integer& second) /* nothrow */ {
using std::swap;
swap(first.d_ptr, second.d_ptr);
}
Implementation
This is rather straightforward. We don't need access to the interface from the PIMPL, thus Q_DECLARE_PUBLIC
and q_ptr
are absent.
// Integer.cpp
#include "Integer.h"
class IntegerPrivate {
public:
int value;
IntegerPrivate(int i) : value(i) {}
};
Integer::Integer() : d_ptr(new IntegerPrivate(0)) {}
Integer::Integer(int i) : d_ptr(new IntegerPrivate(i)) {}
Integer::Integer(const Integer &other) :
d_ptr(new IntegerPrivate(other.d_func()->value)) {}
Integer::operator int&() { return d_func()->value; }
Integer::operator int() const { return d_func()->value; }
Integer::~Integer() {}
?Per this excellent answer: There are other claims that we should specialize std::swap
for our type, provide an in-class swap
along-side a free-function swap
, etc. But this is all unnecessary: any proper use of swap
will be through an unqualified call, and our function will be found through ADL. One function will do.
這篇關于如何使用 Qt 的 PIMPL 成語?的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網!