久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

  • <legend id='oAhMZ'><style id='oAhMZ'><dir id='oAhMZ'><q id='oAhMZ'></q></dir></style></legend>
    <tfoot id='oAhMZ'></tfoot>

    1. <small id='oAhMZ'></small><noframes id='oAhMZ'>

      • <bdo id='oAhMZ'></bdo><ul id='oAhMZ'></ul>

        <i id='oAhMZ'><tr id='oAhMZ'><dt id='oAhMZ'><q id='oAhMZ'><span id='oAhMZ'><b id='oAhMZ'><form id='oAhMZ'><ins id='oAhMZ'></ins><ul id='oAhMZ'></ul><sub id='oAhMZ'></sub></form><legend id='oAhMZ'></legend><bdo id='oAhMZ'><pre id='oAhMZ'><center id='oAhMZ'></center></pre></bdo></b><th id='oAhMZ'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='oAhMZ'><tfoot id='oAhMZ'></tfoot><dl id='oAhMZ'><fieldset id='oAhMZ'></fieldset></dl></div>

        車牌檢測(cè)有哪些好的算法?

        What are good algorithms for vehicle license plate detection?(車牌檢測(cè)有哪些好的算法?)
        <tfoot id='INQA0'></tfoot>

        • <bdo id='INQA0'></bdo><ul id='INQA0'></ul>
            <tbody id='INQA0'></tbody>

          1. <i id='INQA0'><tr id='INQA0'><dt id='INQA0'><q id='INQA0'><span id='INQA0'><b id='INQA0'><form id='INQA0'><ins id='INQA0'></ins><ul id='INQA0'></ul><sub id='INQA0'></sub></form><legend id='INQA0'></legend><bdo id='INQA0'><pre id='INQA0'><center id='INQA0'></center></pre></bdo></b><th id='INQA0'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='INQA0'><tfoot id='INQA0'></tfoot><dl id='INQA0'><fieldset id='INQA0'></fieldset></dl></div>

              <small id='INQA0'></small><noframes id='INQA0'>

              <legend id='INQA0'><style id='INQA0'><dir id='INQA0'><q id='INQA0'></q></dir></style></legend>

                  本文介紹了車牌檢測(cè)有哪些好的算法?的處理方法,對(duì)大家解決問(wèn)題具有一定的參考價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)吧!

                  問(wèn)題描述

                  限時(shí)送ChatGPT賬號(hào)..

                  背景

                  對(duì)于我在大學(xué)的最后一個(gè)項(xiàng)目,我正在開發(fā)一個(gè)車牌檢測(cè)應(yīng)用程序.我認(rèn)為自己是一名中級(jí)程序員,但是我的數(shù)學(xué)知識(shí)缺乏中學(xué)以上的任何知識(shí),這使得生成正確的公式比應(yīng)該做的更難.

                  我花了很多時(shí)間查找學(xué)術(shù)論文,例如:

                  • 解決方案

                    您可以采取多種方法,但首先想到的策略是:

                    • 發(fā)現(xiàn)/研究:確定您可能需要識(shí)別的一組顏色和字體.如果您的樣本圖片代表了大多數(shù)英國(guó)車牌,那么您的工作就會(huì)變得更容易.例如.簡(jiǎn)單、單一的字體和白色背景上的黑色字體
                    • 代碼:嘗試識(shí)別圖像的矩形區(qū)域,其中顏色主要是白色和黑色.這不是一個(gè)非常繁重的數(shù)學(xué)問(wèn)題,它應(yīng)該讓您專注于車牌區(qū)域.
                    • 代碼:對(duì)您的子區(qū)域進(jìn)行一些清理,例如將其轉(zhuǎn)換為純黑白(單色),并可能縮放/移動(dòng)成一個(gè)漂亮、緊湊的矩形.
                    • 使用 API:接下來(lái)在您的子選擇圖像區(qū)域上使用現(xiàn)有的 OCR(光學(xué)字符識(shí)別)算法,以便查看您是否可以閱讀文本.

                    就像我說(shuō)的那樣,這是許多策略中的一種,但它被認(rèn)為是一種需要最少大量數(shù)學(xué)運(yùn)算的策略……也就是說(shuō),如果您能找到適合您的 OCR 實(shí)現(xiàn).

                    Background

                    For my final project at university, I'm developing a vehicle license plate detection application. I consider myself an intermediate programmer, however my mathematics knowledge lacks anything above secondary school, which makes producing the right formulas harder than it probably should be.

                    I've spend a good amount of time looking up academic papers such as:

                    • Detecting Vehicle License Plates in Images
                    • Robust License Plate Detection using Image Saliency
                    • Local Enhancement of Car Image for License Plate Detection

                    When it comes to the math, I'm lost. Due to this testing various graphic images proved productive, for example:

                    to

                    However this approach only worked to that particular image, and if the techniques were applied to different images, I'm sure a poorer conversion would occur. I've read about a formula called the "bottom hat morphology transform", which does the following:

                    Basically, the trans- formation keeps all the dark details of the picture, and eliminates everything else (including bigger dark regions and light regions).

                    I can't find much information on this, however the image within the documentation near the end of the report shows its effectiveness.

                    Other constraints

                    • Developing in C#
                    • Confining the project to UK registration plates only
                    • I can choose the images to convert as a demonstration

                    Question

                    I need advice on what transformation techniques I should focus on developing, and what algorithms can help me.

                    EDIT: New information present on Continued - Vehicle License Plate Detection

                    解決方案

                    There are a number of approaches you can take but the first strategy that pops into mind is to:

                    • Discovery/research: Identify the set of colors and fonts that you may need to identify. If your sample picture is representative of most British plates then your job is made easier. E.g. Simple, singular font and black lettering on a white background
                    • Code: Attempt to identify a rectangular region of an image where the colors are predominantly white and black. This is not a terribly math-heavy problem and it should give you the license plate region to concentrate on.
                    • Code: Do some clean up on your subregion such conversion to pure black and white (monochrome) and perhaps scaling/shifting into a nice, tight rectangle.
                    • Use API: Next employ an existing OCR (optical character recognition) algorithm on your sub-selected image region so see if you can read the text.

                    Like I said, this is one strategy of many but it comes to mind as one requiring the least amount of heavy math... that is if you can find an OCR implementation that will work for you.

                    這篇關(guān)于車牌檢測(cè)有哪些好的算法?的文章就介紹到這了,希望我們推薦的答案對(duì)大家有所幫助,也希望大家多多支持html5模板網(wǎng)!

                    【網(wǎng)站聲明】本站部分內(nèi)容來(lái)源于互聯(lián)網(wǎng),旨在幫助大家更快的解決問(wèn)題,如果有圖片或者內(nèi)容侵犯了您的權(quán)益,請(qǐng)聯(lián)系我們刪除處理,感謝您的支持!

                  相關(guān)文檔推薦

                  onClick event for Image in Unity(Unity中圖像的onClick事件)
                  Running Total C#(運(yùn)行總 C#)
                  Deleting a directory when clicked on a hyperlink with JAvascript.ASP.NET C#(單擊帶有 JAvascript.ASP.NET C# 的超鏈接時(shí)刪除目錄)
                  asp.net listview highlight row on click(asp.net listview 在單擊時(shí)突出顯示行)
                  Calling A Button OnClick from a function(從函數(shù)調(diào)用按鈕 OnClick)
                  ASP.net C# Gridview ButtonField onclick event(ASP.net C# Gridview ButtonField onclick 事件)
                    <tbody id='mBOXm'></tbody>

                  <small id='mBOXm'></small><noframes id='mBOXm'>

                  <legend id='mBOXm'><style id='mBOXm'><dir id='mBOXm'><q id='mBOXm'></q></dir></style></legend>

                    • <bdo id='mBOXm'></bdo><ul id='mBOXm'></ul>
                    • <tfoot id='mBOXm'></tfoot>

                      1. <i id='mBOXm'><tr id='mBOXm'><dt id='mBOXm'><q id='mBOXm'><span id='mBOXm'><b id='mBOXm'><form id='mBOXm'><ins id='mBOXm'></ins><ul id='mBOXm'></ul><sub id='mBOXm'></sub></form><legend id='mBOXm'></legend><bdo id='mBOXm'><pre id='mBOXm'><center id='mBOXm'></center></pre></bdo></b><th id='mBOXm'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='mBOXm'><tfoot id='mBOXm'></tfoot><dl id='mBOXm'><fieldset id='mBOXm'></fieldset></dl></div>

                            主站蜘蛛池模板: 国产黄a三级 | 日一日操一操 | 国产va在线 | 国产综合亚洲精品一区二 | 欧美日韩一区二区三区四区 | 91精品国产麻豆国产自产在线 | 女人黄网站 | 欧美极品视频 | 亚洲激情第一页 | 中文字幕永久免费 | 日韩精品网 | 国产片一区二区 | 久久黄视频| 欧美精品久久 | 久久免费影院 | 欧美成人小视频 | 午夜精品影院 | 久热精品视频在线观看 | 蜜臀av性久久久久av蜜臀妖精 | 日本久久久久 | 国产伦精品一区二区三区视频网站 | 六月丁香综合 | 在线网站免费观看18 | 欧美日韩视频在线 | 精品一区二区三区免费 | 夜夜操天天操 | 精品一区二区三区在线观看 | 日本少妇做爰全过程毛片 | 在线中文字幕网站 | 婷婷在线视频 | 国产探花在线精品一区二区 | 精品免费在线观看 | 国产主播99 | 亚洲精品国产精品乱码不卡 | 国产精品一区二区三区四区五区 | 亚洲天堂欧美 | 免费一级大片 | 国产成人精品久久久 | 国产极品国产极品 | 99热99re6国产在线播放 | 黄av在线 |