久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

  • <legend id='oAhMZ'><style id='oAhMZ'><dir id='oAhMZ'><q id='oAhMZ'></q></dir></style></legend>
    <tfoot id='oAhMZ'></tfoot>

    1. <small id='oAhMZ'></small><noframes id='oAhMZ'>

      • <bdo id='oAhMZ'></bdo><ul id='oAhMZ'></ul>

        <i id='oAhMZ'><tr id='oAhMZ'><dt id='oAhMZ'><q id='oAhMZ'><span id='oAhMZ'><b id='oAhMZ'><form id='oAhMZ'><ins id='oAhMZ'></ins><ul id='oAhMZ'></ul><sub id='oAhMZ'></sub></form><legend id='oAhMZ'></legend><bdo id='oAhMZ'><pre id='oAhMZ'><center id='oAhMZ'></center></pre></bdo></b><th id='oAhMZ'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='oAhMZ'><tfoot id='oAhMZ'></tfoot><dl id='oAhMZ'><fieldset id='oAhMZ'></fieldset></dl></div>

        車牌檢測有哪些好的算法?

        What are good algorithms for vehicle license plate detection?(車牌檢測有哪些好的算法?)
        <tfoot id='INQA0'></tfoot>

        • <bdo id='INQA0'></bdo><ul id='INQA0'></ul>
            <tbody id='INQA0'></tbody>

          1. <i id='INQA0'><tr id='INQA0'><dt id='INQA0'><q id='INQA0'><span id='INQA0'><b id='INQA0'><form id='INQA0'><ins id='INQA0'></ins><ul id='INQA0'></ul><sub id='INQA0'></sub></form><legend id='INQA0'></legend><bdo id='INQA0'><pre id='INQA0'><center id='INQA0'></center></pre></bdo></b><th id='INQA0'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='INQA0'><tfoot id='INQA0'></tfoot><dl id='INQA0'><fieldset id='INQA0'></fieldset></dl></div>

              <small id='INQA0'></small><noframes id='INQA0'>

              <legend id='INQA0'><style id='INQA0'><dir id='INQA0'><q id='INQA0'></q></dir></style></legend>

                  本文介紹了車牌檢測有哪些好的算法?的處理方法,對大家解決問題具有一定的參考價值,需要的朋友們下面隨著小編來一起學習吧!

                  問題描述

                  限時送ChatGPT賬號..

                  背景

                  對于我在大學的最后一個項目,我正在開發一個車牌檢測應用程序.我認為自己是一名中級程序員,但是我的數學知識缺乏中學以上的任何知識,這使得生成正確的公式比應該做的更難.

                  我花了很多時間查找學術論文,例如:

                  • 解決方案

                    您可以采取多種方法,但首先想到的策略是:

                    • 發現/研究:確定您可能需要識別的一組顏色和字體.如果您的樣本圖片代表了大多數英國車牌,那么您的工作就會變得更容易.例如.簡單、單一的字體和白色背景上的黑色字體
                    • 代碼:嘗試識別圖像的矩形區域,其中顏色主要是白色和黑色.這不是一個非常繁重的數學問題,它應該讓您專注于車牌區域.
                    • 代碼:對您的子區域進行一些清理,例如將其轉換為純黑白(單色),并可能縮放/移動成一個漂亮、緊湊的矩形.
                    • 使用 API:接下來在您的子選擇圖像區域上使用現有的 OCR(光學字符識別)算法,以便查看您是否可以閱讀文本.

                    就像我說的那樣,這是許多策略中的一種,但它被認為是一種需要最少大量數學運算的策略……也就是說,如果您能找到適合您的 OCR 實現.

                    Background

                    For my final project at university, I'm developing a vehicle license plate detection application. I consider myself an intermediate programmer, however my mathematics knowledge lacks anything above secondary school, which makes producing the right formulas harder than it probably should be.

                    I've spend a good amount of time looking up academic papers such as:

                    • Detecting Vehicle License Plates in Images
                    • Robust License Plate Detection using Image Saliency
                    • Local Enhancement of Car Image for License Plate Detection

                    When it comes to the math, I'm lost. Due to this testing various graphic images proved productive, for example:

                    to

                    However this approach only worked to that particular image, and if the techniques were applied to different images, I'm sure a poorer conversion would occur. I've read about a formula called the "bottom hat morphology transform", which does the following:

                    Basically, the trans- formation keeps all the dark details of the picture, and eliminates everything else (including bigger dark regions and light regions).

                    I can't find much information on this, however the image within the documentation near the end of the report shows its effectiveness.

                    Other constraints

                    • Developing in C#
                    • Confining the project to UK registration plates only
                    • I can choose the images to convert as a demonstration

                    Question

                    I need advice on what transformation techniques I should focus on developing, and what algorithms can help me.

                    EDIT: New information present on Continued - Vehicle License Plate Detection

                    解決方案

                    There are a number of approaches you can take but the first strategy that pops into mind is to:

                    • Discovery/research: Identify the set of colors and fonts that you may need to identify. If your sample picture is representative of most British plates then your job is made easier. E.g. Simple, singular font and black lettering on a white background
                    • Code: Attempt to identify a rectangular region of an image where the colors are predominantly white and black. This is not a terribly math-heavy problem and it should give you the license plate region to concentrate on.
                    • Code: Do some clean up on your subregion such conversion to pure black and white (monochrome) and perhaps scaling/shifting into a nice, tight rectangle.
                    • Use API: Next employ an existing OCR (optical character recognition) algorithm on your sub-selected image region so see if you can read the text.

                    Like I said, this is one strategy of many but it comes to mind as one requiring the least amount of heavy math... that is if you can find an OCR implementation that will work for you.

                    這篇關于車牌檢測有哪些好的算法?的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網!

                    【網站聲明】本站部分內容來源于互聯網,旨在幫助大家更快的解決問題,如果有圖片或者內容侵犯了您的權益,請聯系我們刪除處理,感謝您的支持!

                  相關文檔推薦

                  onClick event for Image in Unity(Unity中圖像的onClick事件)
                  Running Total C#(運行總 C#)
                  Deleting a directory when clicked on a hyperlink with JAvascript.ASP.NET C#(單擊帶有 JAvascript.ASP.NET C# 的超鏈接時刪除目錄)
                  asp.net listview highlight row on click(asp.net listview 在單擊時突出顯示行)
                  Calling A Button OnClick from a function(從函數調用按鈕 OnClick)
                  ASP.net C# Gridview ButtonField onclick event(ASP.net C# Gridview ButtonField onclick 事件)
                    <tbody id='mBOXm'></tbody>

                  <small id='mBOXm'></small><noframes id='mBOXm'>

                  <legend id='mBOXm'><style id='mBOXm'><dir id='mBOXm'><q id='mBOXm'></q></dir></style></legend>

                    • <bdo id='mBOXm'></bdo><ul id='mBOXm'></ul>
                    • <tfoot id='mBOXm'></tfoot>

                      1. <i id='mBOXm'><tr id='mBOXm'><dt id='mBOXm'><q id='mBOXm'><span id='mBOXm'><b id='mBOXm'><form id='mBOXm'><ins id='mBOXm'></ins><ul id='mBOXm'></ul><sub id='mBOXm'></sub></form><legend id='mBOXm'></legend><bdo id='mBOXm'><pre id='mBOXm'><center id='mBOXm'></center></pre></bdo></b><th id='mBOXm'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='mBOXm'><tfoot id='mBOXm'></tfoot><dl id='mBOXm'><fieldset id='mBOXm'></fieldset></dl></div>

                            主站蜘蛛池模板: 国产免费一级片 | 成人国内精品久久久久一区 | 久久久久久91 | 国产日韩欧美中文 | 亚洲精品在线看 | 日韩精品久久一区二区三区 | 国产亚洲精品综合一区 | 天天操天天操 | 少妇午夜一级艳片欧美精品 | 日韩精品中文字幕一区二区三区 | 在线观看中文字幕 | 欧美国产中文字幕 | 天堂免费 | 精品福利一区 | 欧美另类视频 | 亚洲一区二区在线播放 | 亚洲精品国产成人 | 一区二区三区电影在线观看 | 中文字幕一区二区三区精彩视频 | 99久久精品一区二区毛片吞精 | 精品久久电影 | 国产在线视频三区 | 久久777 | 一区二区三区在线免费 | 一级黄色生活视频 | 黄色在线免费观看 | 色黄视频在线 | 久久99精品视频 | 在线观看免费av片 | 夜夜草 | 国产精品一区二区免费 | 久久综合av | 欧美电影一区 | 超碰97人人人人人蜜桃 | 狠狠亚洲 | 亚洲a在线观看 | 精品视频在线一区 | 中文字幕一区在线观看视频 | 色婷婷亚洲一区二区三区 | 国产你懂的在线观看 | 国产成人免费视频 |