久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

為多個(gè)層次組優(yōu)化 SUM OVER PARTITION BY

Optimizing SUM OVER PARTITION BY for several hierarchical groups(為多個(gè)層次組優(yōu)化 SUM OVER PARTITION BY)
本文介紹了為多個(gè)層次組優(yōu)化 SUM OVER PARTITION BY的處理方法,對(duì)大家解決問(wèn)題具有一定的參考價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)吧!

問(wèn)題描述

限時(shí)送ChatGPT賬號(hào)..

我有一張如下表:

Region    Country    Manufacturer    Brand    Period    Spend
R1        C1         M1              B1       2016      5
R1        C1         M1              B1       2017      10
R1        C1         M1              B1       2017      20
R1        C1         M1              B2       2016      15
R1        C1         M1              B3       2017      20
R1        C2         M1              B1       2017      5
R1        C2         M2              B4       2017      25
R1        C2         M2              B5       2017      30
R2        C3         M1              B1       2017      35
R2        C3         M2              B4       2017      40
R2        C3         M2              B5       2017      45

我需要在不同的組中找到 SUM([Spend] 如下:

I need to find SUM([Spend] over different groups as follow:

  1. 整個(gè)表中所有行的總支出
  2. 每個(gè)區(qū)域
  3. 的總支出
  4. 每個(gè)地區(qū)和國(guó)家組的總支出
  5. 每個(gè)地區(qū)、國(guó)家/地區(qū)和廣告客戶(hù)組的總支出
  1. Total Spend over all the rows in the whole table
  2. Total Spend for each Region
  3. Total Spend for each Region and Country group
  4. Total Spend for each Region, Country and Advertiser group

所以我在下面寫(xiě)了這個(gè)查詢(xún):

So I wrote this query below:

SELECT 
    [Period]
    ,[Region]
    ,[Country]
    ,[Manufacturer]
    ,[Brand]
    ,SUM([Spend]) OVER (PARTITION BY [Period]) AS [SumOfSpendWorld]
    ,SUM([Spend]) OVER (PARTITION BY [Period], [Region]) AS [SumOfSpendRegion]
    ,SUM([Spend]) OVER (PARTITION BY [Period], [Region], [Country]) AS [SumOfSpendCountry]
    ,SUM([Spend]) OVER (PARTITION BY [Period], [Region], [Country], [Manufacturer]) AS [SumOfSpendManufacturer]
FROM myTable

但是對(duì)于只有 450K 行的表,該查詢(xún)需要 15 分鐘以上的時(shí)間.我想知道是否有任何方法可以?xún)?yōu)化此性能.預(yù)先感謝您的回答/建議!

But that query takes >15 minutes for a table of just 450K rows. I'd like to know if there is any way to optimize this performance. Thank you in advanced for your answers/suggestions!

推薦答案

你對(duì)問(wèn)題的描述向我暗示了分組集:

Your description of the problem suggests grouping sets to me:

SELECT YEAR([Period]) AS [Period], [Region], [Country], [Manufacturer], 
       SUM([Spend])
GROUP BY GROUPING SETS ( (YEAR([Period]),
                         (YEAR([Period]), [Region]),
                         (YEAR([Period]), [Region], [Country]), 
                         (YEAR([Period]), [Region], [Country], [Manufacturer])
                        );

我不知道這是否會(huì)更快,但它似乎更符合您的問(wèn)題.

I don't know if this will be faster, but it certainly seems more aligned with your question.

這篇關(guān)于為多個(gè)層次組優(yōu)化 SUM OVER PARTITION BY的文章就介紹到這了,希望我們推薦的答案對(duì)大家有所幫助,也希望大家多多支持html5模板網(wǎng)!

【網(wǎng)站聲明】本站部分內(nèi)容來(lái)源于互聯(lián)網(wǎng),旨在幫助大家更快的解決問(wèn)題,如果有圖片或者內(nèi)容侵犯了您的權(quán)益,請(qǐng)聯(lián)系我們刪除處理,感謝您的支持!

相關(guān)文檔推薦

What SQL Server Datatype Should I Use To Store A Byte[](我應(yīng)該使用什么 SQL Server 數(shù)據(jù)類(lèi)型來(lái)存儲(chǔ)字節(jié) [])
Interpreting type codes in sys.objects in SQL Server(解釋 SQL Server 中 sys.objects 中的類(lèi)型代碼)
Typeorm Does not return all data(Typeorm 不返回所有數(shù)據(jù))
Typeorm .loadRelationCountAndMap returns zeros(Typeorm .loadRelationCountAndMap 返回零)
How to convert #39;2016-07-01 01:12:22 PM#39; to #39;2016-07-01 13:12:22#39; hour format?(如何將“2016-07-01 01:12:22 PM轉(zhuǎn)換為“2016-07-01 13:12:22小時(shí)格式?)
MS SQL: Should ISDATE() Return quot;1quot; when Cannot Cast as Date?(MS SQL:ISDATE() 是否應(yīng)該返回“1?什么時(shí)候不能投射為日期?)
主站蜘蛛池模板: 国产电影一区二区三区爱妃记 | 中文字幕av亚洲精品一部二部 | 殴美成人在线视频 | 久久成人精品视频 | 嫩草懂你的影院入口 | 日韩影院一区 | 久久久久久久久久久久一区二区 | 亚洲精品小视频在线观看 | 国产成人精品一区二区在线 | 日韩精品成人网 | 国产精品乱码一区二三区小蝌蚪 | 国产视频精品在线观看 | 欧美aⅴ片 | 一区二区三区欧美 | 手机在线一区二区三区 | 91久久久久 | 国产亚洲一区二区三区在线观看 | 国产精品久久久久久久久久久久冷 | a欧美| 成人国产综合 | 老外黄色一级片 | 亚洲欧洲小视频 | 国产高清久久久 | 五月综合激情婷婷 | 日韩一区二区三区视频 | 国产精品国产精品国产专区不卡 | 99国产视频| 亚洲色图网址 | 久久四虎 | 国产精品观看 | 国产精品久久久久久久久久 | 久久久久久av | 国产成人网 | 国产一区二区在线视频 | 国产区在线视频 | www.亚洲| 国产色婷婷久久99精品91 | 国产成人99久久亚洲综合精品 | 久久久久1 | 欧美激情精品久久久久 | 欧美精品v |