本文介紹了Python Pandas:計算每行數據幀中特定值的頻率?的處理方法,對大家解決問題具有一定的參考價值,需要的朋友們下面隨著小編來一起學習吧!
問題描述
我有一個數據框 df:
I have a dataframe df:
domain country out1 out2 out3
oranjeslag.nl NL 1 0 NaN
pietervaartjes.nl NL 1 1 0
andreaputting.com.au AU NaN 1 0
michaelcardillo.com US 0 0 NaN
我想定義兩列 sum_0 和 sum_1 并計算每行列 (out1,out2,out3) 中 0 和 1 的數量.所以預期的結果是:
I would like to define two columns sum_0 and sum_1 and count the number of 0s and 1s in columns (out1,out2,out3),per row. So expected results would be:
domain country out1 out2 out3 sum_0 sum_1
oranjeslag.nl NL 1 0 NaN 1 1
pietervaartjes.nl NL 1 1 0 1 2
andreaputting.com.au AU NaN 1 0 1 1
michaelcardillo.com US 0 0 NaN 2 0
我有這個計算1個數的代碼,但我不知道如何計算0個數.
I have this code for counting the number of 1s, but I do not know how to count the number of 0s.
df['sum_1'] = df[['out_1','out_2','out_3']].sum(axis=1)
有人可以幫忙嗎?
推薦答案
你可以為每個條件調用sum
,1
條件很簡單,只是一個直接的axis=1
上的 sum,第二次您可以將 df 與 0
值進行比較,然后像以前一樣調用 sum
:
You can call sum
for each condition, the 1
condition is simple just a straight sum
on axis=1
, for the second you can compare the df against 0
value and then call sum
as before:
In [102]:
df['sum_1'] = df[['out1','out2','out3']].sum(axis=1)
df['sum_0'] = (df[['out1','out2','out3']] == 0).sum(axis=1)
df
Out[102]:
domain country out1 out2 out3 sum_0 sum_1
0 oranjeslag.nl NL 1 0 NaN 1 1
1 pietervaartjes.nl NL 1 1 0 1 2
2 andreaputting.com.au AU NaN 1 0 1 1
3 michaelcardillo.com US 0 0 NaN 2 0
這篇關于Python Pandas:計算每行數據幀中特定值的頻率?的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網!
【網站聲明】本站部分內容來源于互聯網,旨在幫助大家更快的解決問題,如果有圖片或者內容侵犯了您的權益,請聯系我們刪除處理,感謝您的支持!