久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

<legend id='aY0O0'><style id='aY0O0'><dir id='aY0O0'><q id='aY0O0'></q></dir></style></legend>

    • <bdo id='aY0O0'></bdo><ul id='aY0O0'></ul>
  • <small id='aY0O0'></small><noframes id='aY0O0'>

      <i id='aY0O0'><tr id='aY0O0'><dt id='aY0O0'><q id='aY0O0'><span id='aY0O0'><b id='aY0O0'><form id='aY0O0'><ins id='aY0O0'></ins><ul id='aY0O0'></ul><sub id='aY0O0'></sub></form><legend id='aY0O0'></legend><bdo id='aY0O0'><pre id='aY0O0'><center id='aY0O0'></center></pre></bdo></b><th id='aY0O0'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='aY0O0'><tfoot id='aY0O0'></tfoot><dl id='aY0O0'><fieldset id='aY0O0'></fieldset></dl></div>
      <tfoot id='aY0O0'></tfoot>
      1. 在沒有 AVX 的 CPU 上運行 TensorFlow 2.0

        Run TensorFlow 2.0 on CPU without AVX(在沒有 AVX 的 CPU 上運行 TensorFlow 2.0)
            <tbody id='1lqxr'></tbody>
          1. <i id='1lqxr'><tr id='1lqxr'><dt id='1lqxr'><q id='1lqxr'><span id='1lqxr'><b id='1lqxr'><form id='1lqxr'><ins id='1lqxr'></ins><ul id='1lqxr'></ul><sub id='1lqxr'></sub></form><legend id='1lqxr'></legend><bdo id='1lqxr'><pre id='1lqxr'><center id='1lqxr'></center></pre></bdo></b><th id='1lqxr'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='1lqxr'><tfoot id='1lqxr'></tfoot><dl id='1lqxr'><fieldset id='1lqxr'></fieldset></dl></div>
          2. <tfoot id='1lqxr'></tfoot>

                <bdo id='1lqxr'></bdo><ul id='1lqxr'></ul>

                <small id='1lqxr'></small><noframes id='1lqxr'>

                  <legend id='1lqxr'><style id='1lqxr'><dir id='1lqxr'><q id='1lqxr'></q></dir></style></legend>
                • 本文介紹了在沒有 AVX 的 CPU 上運行 TensorFlow 2.0的處理方法,對大家解決問題具有一定的參考價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)吧!

                  問題描述

                  我想安裝和使用 TensorFlow 2.0.我有一臺裝有 Windows 10 的 PC、Geforce GTX 1080 Ti GPU 和舊的 Intel Xeon X5660 CPU,不支持 AVX.

                  I would like to install and use TensorFlow 2.0. I have a PC with Windows 10, a Geforce GTX 1080 Ti GPU and an old Intel Xeon X5660 CPU, which doesn't support AVX.

                  現(xiàn)在,我的問題是每當(dāng)我嘗試在這臺機(jī)器上運行任何 TensorFlow 代碼時都會出現(xiàn) DLL 導(dǎo)入錯誤.我知道 此存儲庫 為舊版 CPU 提供解決方案,但不幸的是我找不到任何TensorFlow 2.0 包在那里.

                  Now, my problem is that there is a DLL Import error whenever I attempt to run any TensorFlow code on this machine. I know about this repository providing a solution for legacy CPUs but unfortunately I can't find any TensorFlow 2.0 packages there.

                  任何幫助將不勝感激.謝謝.

                  Any help would be highly appreciated. Thank you.

                  推薦答案

                  倉庫中有一個全新的wheel文件:

                  There is a brand new wheel file in the repository:

                  https://github.com/fo40225/tensorflow-windows-wheel

                  以下文件運行良好:

                  https://github.com/fo40225/tensorflow-windows-wheel/blob/master/2.0.0/py37/GPU/cuda101cudnn76sse2/tensorflow_gpu-2.0.0-cp37-cp37m-win_amd64.whl

                  如 Readme.md 中所述:

                  As stated in the Readme.md:

                  第一次執(zhí)行TensorFlow時,編譯需要時間."

                  "It will take time for compiling when execute TensorFlow first time."

                  看看這個測試:

                  >>>import tensorflow as tf
                  tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll
                  
                  >>>print(tf.__version__)
                  2.0.0
                  
                  >>>from tensorflow.python.client import device_lib
                  >>>print(device_lib.list_local_devices())
                  
                  tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library nvcuda.dll
                  tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties: 
                  name: GeForce GTX 1050 major: 6 minor: 1 memoryClockRate(GHz): 1.531
                  GPU libraries are statically linked, skip dlopen check.
                  Adding visible gpu devices: 0
                  Device interconnect StreamExecutor with strength 1 edge matrix:
                       0
                  0:   N
                  Created TensorFlow device (/device:GPU:0 with 1340 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1050, pci bus id: 0000:01:00.0, compute capability: 6.1)
                  
                  [name: "/device:CPU:0"
                  device_type: "CPU"
                  memory_limit: 268435456
                  locality {
                  }
                  incarnation: 4456898788177247918
                  , name: "/device:GPU:0"
                  device_type: "GPU"
                  memory_limit: 1406107238
                  locality {
                    bus_id: 1
                    links {
                    }
                  }
                  incarnation: 3224787151756357043
                  physical_device_desc: "device: 0, name: GeForce GTX 1050, pci bus id: 0000:01:00.0, compute capability: 6.1"
                  ]
                  

                  這篇關(guān)于在沒有 AVX 的 CPU 上運行 TensorFlow 2.0的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網(wǎng)!

                  【網(wǎng)站聲明】本站部分內(nèi)容來源于互聯(lián)網(wǎng),旨在幫助大家更快的解決問題,如果有圖片或者內(nèi)容侵犯了您的權(quán)益,請聯(lián)系我們刪除處理,感謝您的支持!

                  相關(guān)文檔推薦

                  How to make a discord bot that gives roles in Python?(如何制作一個在 Python 中提供角色的不和諧機(jī)器人?)
                  Discord bot isn#39;t responding to commands(Discord 機(jī)器人沒有響應(yīng)命令)
                  Can you Get the quot;About mequot; feature on Discord bot#39;s? (Discord.py)(你能得到“關(guān)于我嗎?Discord 機(jī)器人的功能?(不和諧.py))
                  message.channel.id Discord PY(message.channel.id Discord PY)
                  How do I host my discord.py bot on heroku?(如何在 heroku 上托管我的 discord.py 機(jī)器人?)
                  discord.py - Automaticaly Change an Role Color(discord.py - 自動更改角色顏色)

                    • <bdo id='8qgMP'></bdo><ul id='8qgMP'></ul>
                        <tbody id='8qgMP'></tbody>
                      • <i id='8qgMP'><tr id='8qgMP'><dt id='8qgMP'><q id='8qgMP'><span id='8qgMP'><b id='8qgMP'><form id='8qgMP'><ins id='8qgMP'></ins><ul id='8qgMP'></ul><sub id='8qgMP'></sub></form><legend id='8qgMP'></legend><bdo id='8qgMP'><pre id='8qgMP'><center id='8qgMP'></center></pre></bdo></b><th id='8qgMP'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='8qgMP'><tfoot id='8qgMP'></tfoot><dl id='8qgMP'><fieldset id='8qgMP'></fieldset></dl></div>

                        <legend id='8qgMP'><style id='8qgMP'><dir id='8qgMP'><q id='8qgMP'></q></dir></style></legend>
                        <tfoot id='8qgMP'></tfoot>

                            <small id='8qgMP'></small><noframes id='8qgMP'>

                          • 主站蜘蛛池模板: 一区在线播放 | 欧美精品入口蜜桃 | 日韩中文字幕在线 | 伊人影院久久 | 四虎8848精品成人免费网站 | 亚洲第一黄色 | 日韩欧美国产精品 | 蜜桃色一区二区三区 | 大尺度做爰床戏呻吟舒畅 | 欧美视频区 | 亚洲五码在线 | 亚洲福利专区 | 日本男人的天堂 | 免费在线a| 日韩不卡免费视频 | 欧美性猛交一区二区三区精品 | 亚洲精品在线观看视频 | 少妇一级淫片免费看 | 亚洲精品久久久久久久久 | 中文字幕在线观看一区二区三区 | 麻豆做爰免费观看 | 欧美日韩亚洲视频 | 蜜桃av一区 | 一区免费视频 | 午夜999 | 亚洲丝袜av| 国产精品一区二区三区免费 | 黄色大片在线 | 黄色a级网站 | 美女黄色大片 | 久久精品一区二区三区不卡牛牛 | 中文字幕免费av | 久久精品视频网站 | 日本欧美视频 | 免费观看毛片 | 一区二区不卡视频 | 伊人久久av | 欧美色偷偷 | 一二三区视频 | 日韩欧美在线视频 | 久久精品国产免费 |