久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

        <bdo id='5KU2A'></bdo><ul id='5KU2A'></ul>

      <small id='5KU2A'></small><noframes id='5KU2A'>

      <i id='5KU2A'><tr id='5KU2A'><dt id='5KU2A'><q id='5KU2A'><span id='5KU2A'><b id='5KU2A'><form id='5KU2A'><ins id='5KU2A'></ins><ul id='5KU2A'></ul><sub id='5KU2A'></sub></form><legend id='5KU2A'></legend><bdo id='5KU2A'><pre id='5KU2A'><center id='5KU2A'></center></pre></bdo></b><th id='5KU2A'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='5KU2A'><tfoot id='5KU2A'></tfoot><dl id='5KU2A'><fieldset id='5KU2A'></fieldset></dl></div>
      <legend id='5KU2A'><style id='5KU2A'><dir id='5KU2A'><q id='5KU2A'></q></dir></style></legend>
      <tfoot id='5KU2A'></tfoot>

      NIFI - QueryDatabaseTable 處理器.如何查詢被修改的行

      NIFI - QueryDatabaseTable processor. How to query rows which is modified?(NIFI - QueryDatabaseTable 處理器.如何查詢被修改的行?)
      1. <tfoot id='IdhUj'></tfoot>
        <i id='IdhUj'><tr id='IdhUj'><dt id='IdhUj'><q id='IdhUj'><span id='IdhUj'><b id='IdhUj'><form id='IdhUj'><ins id='IdhUj'></ins><ul id='IdhUj'></ul><sub id='IdhUj'></sub></form><legend id='IdhUj'></legend><bdo id='IdhUj'><pre id='IdhUj'><center id='IdhUj'></center></pre></bdo></b><th id='IdhUj'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='IdhUj'><tfoot id='IdhUj'></tfoot><dl id='IdhUj'><fieldset id='IdhUj'></fieldset></dl></div>
      2. <legend id='IdhUj'><style id='IdhUj'><dir id='IdhUj'><q id='IdhUj'></q></dir></style></legend>
            <tbody id='IdhUj'></tbody>

          <small id='IdhUj'></small><noframes id='IdhUj'>

              <bdo id='IdhUj'></bdo><ul id='IdhUj'></ul>
                本文介紹了NIFI - QueryDatabaseTable 處理器.如何查詢被修改的行?的處理方法,對大家解決問題具有一定的參考價值,需要的朋友們下面隨著小編來一起學習吧!

                問題描述

                我正在研究 NIFI 數據流,其中我的用例是獲取 mysql 表數據并將其放入 hdfs/本地文件系統.

                我構建了一個數據流管道,其中使用了 querydatabaseTable 處理器 ------ ConvertRecord --- putFile 處理器.

                我的表架構 ---> id,name,city,Created_date

                即使我在表中插入新記錄,我也能在目的地接收文件

                但是,但是……

                當我更新現有行時,處理器沒有獲取這些記錄,看起來它有一些限制.

                我的問題是,如何處理這種情況?由任何其他處理器或需要更新某些屬性.

                請人幫忙@Bryan Bende

                解決方案

                QueryDatabaseTable Processor 需要被告知它可以使用哪些列來識別新數據.

                串行 idcreated 時間戳是不夠的.

                不要忘記將 Maximum-value Columns 設置為這些列.

                所以我基本上要說的是:

                <塊引用>

                如果你自己不能判斷這是sql中的新記錄,nifi也不能.

                I am working on NIFI Data Flow where my usecase is fetch mysql table data and put into hdfs/local file system.

                I have built a data flow pipeline where i used querydatabaseTable processor ------ ConvertRecord --- putFile processor.

                My Table Schema ---> id,name,city,Created_date

                I am able to receive files in destination even when i am inserting new records in table

                But, but ....

                When i am updating exsiting rows then processor is not fetching those records looks like it has some limitation.

                My Question is ,How to handle this scenario? either by any other processor or need to update some property.

                PLease someone help @Bryan Bende

                解決方案

                QueryDatabaseTable Processor needs to be informed which columns it can use to identify new data.

                A serial id or created timestamp is not sufficient.

                From the documentation:

                Maximum-value Columns:

                A comma-separated list of column names. The processor will keep track of the maximum value for each column that has been returned since the processor started running. Using multiple columns implies an order to the column list, and each column's values are expected to increase more slowly than the previous columns' values. Thus, using multiple columns implies a hierarchical structure of columns, which is usually used for partitioning tables. This processor can be used to retrieve only those rows that have been added/updated since the last retrieval. Note that some JDBC types such as bit/boolean are not conducive to maintaining maximum value, so columns of these types should not be listed in this property, and will result in error(s) during processing. If no columns are provided, all rows from the table will be considered, which could have a performance impact. NOTE: It is important to use consistent max-value column names for a given table for incremental fetch to work properly.

                Judging be the table scheme, there is no sql-way of telling whether data was updated.

                There are many ways to solve this. In your case, the easiest thing to do might be to rename column created to modified and set to now() on updates or to work with a second timestamp column.

                So for instance

                | stamp_updated | timestamp | CURRENT_TIMESTAMP   | on update CURRENT_TIMESTAMP |
                

                is the new column added. In the processor you use the stamp_updated column to identify new data

                Don't forget to set Maximum-value Columns to those columns.

                So what I am basically saying is:

                If you cannot tell that it is a new record in sql yourself, nifi cannot either.

                這篇關于NIFI - QueryDatabaseTable 處理器.如何查詢被修改的行?的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網!

                【網站聲明】本站部分內容來源于互聯網,旨在幫助大家更快的解決問題,如果有圖片或者內容侵犯了您的權益,請聯系我們刪除處理,感謝您的支持!

                相關文檔推薦

                How to use windowing functions efficiently to decide next N number of rows based on N number of previous values(如何有效地使用窗口函數根據 N 個先前值來決定接下來的 N 個行)
                reuse the result of a select expression in the quot;GROUP BYquot; clause?(在“GROUP BY中重用選擇表達式的結果;條款?)
                Does ignore option of Pyspark DataFrameWriter jdbc function ignore entire transaction or just offending rows?(Pyspark DataFrameWriter jdbc 函數的 ignore 選項是忽略整個事務還是只是有問題的行?) - IT屋-程序員軟件開發技
                Error while using INSERT INTO table ON DUPLICATE KEY, using a for loop array(使用 INSERT INTO table ON DUPLICATE KEY 時出錯,使用 for 循環數組)
                pyspark mysql jdbc load An error occurred while calling o23.load No suitable driver(pyspark mysql jdbc load 調用 o23.load 時發生錯誤 沒有合適的驅動程序)
                How to integrate Apache Spark with MySQL for reading database tables as a spark dataframe?(如何將 Apache Spark 與 MySQL 集成以將數據庫表作為 Spark 數據幀讀取?)

                  <tfoot id='Ordau'></tfoot>
                  <legend id='Ordau'><style id='Ordau'><dir id='Ordau'><q id='Ordau'></q></dir></style></legend>
                  <i id='Ordau'><tr id='Ordau'><dt id='Ordau'><q id='Ordau'><span id='Ordau'><b id='Ordau'><form id='Ordau'><ins id='Ordau'></ins><ul id='Ordau'></ul><sub id='Ordau'></sub></form><legend id='Ordau'></legend><bdo id='Ordau'><pre id='Ordau'><center id='Ordau'></center></pre></bdo></b><th id='Ordau'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='Ordau'><tfoot id='Ordau'></tfoot><dl id='Ordau'><fieldset id='Ordau'></fieldset></dl></div>

                    <tbody id='Ordau'></tbody>
                    <bdo id='Ordau'></bdo><ul id='Ordau'></ul>

                        • <small id='Ordau'></small><noframes id='Ordau'>

                        • 主站蜘蛛池模板: 欧美精品1区2区 | 伊人超碰| av网站免费 | 在线观看黄视频 | 精品国产乱码久久久久久88av | 色久五月 | 成人久久18免费网站 | 99福利| 欧美一区二区视频 | h视频在线免费观看 | 在线视频 亚洲 | 国产精品色 | 欧美一级特黄aaa大片在线观看 | 91精品久久久久久久久久入口 | 久久精品免费看 | 国产一级片久久久 | 久久亚洲一区二区 | 欧美久久久久久 | 国产高清一区二区三区 | 日本 欧美 国产 | 一区视频在线 | 一区二区精品视频 | 一区日韩| 国产一区二区三区网站 | 国产一区二区在线免费 | 色资源在线 | 涩涩视频网站在线观看 | 国产精品久久久久久福利一牛影视 | 91精品国产综合久久福利软件 | 三级免费毛片 | www.五月婷婷.com | 高清国产午夜精品久久久久久 | 在线成人免费观看 | 亚洲午夜电影 | 日韩福利 | 黄在线| 岛国精品 | 亚洲免费精品一区 | 国产精品国产三级国产aⅴ无密码 | 久久久久久久久久久国产 | 国产成人一区二区三区精 |