久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

<i id='rt2IJ'><tr id='rt2IJ'><dt id='rt2IJ'><q id='rt2IJ'><span id='rt2IJ'><b id='rt2IJ'><form id='rt2IJ'><ins id='rt2IJ'></ins><ul id='rt2IJ'></ul><sub id='rt2IJ'></sub></form><legend id='rt2IJ'></legend><bdo id='rt2IJ'><pre id='rt2IJ'><center id='rt2IJ'></center></pre></bdo></b><th id='rt2IJ'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='rt2IJ'><tfoot id='rt2IJ'></tfoot><dl id='rt2IJ'><fieldset id='rt2IJ'></fieldset></dl></div>
  • <tfoot id='rt2IJ'></tfoot>

    1. <legend id='rt2IJ'><style id='rt2IJ'><dir id='rt2IJ'><q id='rt2IJ'></q></dir></style></legend>

        <bdo id='rt2IJ'></bdo><ul id='rt2IJ'></ul>

      1. <small id='rt2IJ'></small><noframes id='rt2IJ'>

        Pyspark DataFrameWriter jdbc 函數(shù)的 ignore 選項(xiàng)是忽略整

        Does ignore option of Pyspark DataFrameWriter jdbc function ignore entire transaction or just offending rows?(Pyspark DataFrameWriter jdbc 函數(shù)的 ignore 選項(xiàng)是忽略整個(gè)事務(wù)還是只是有問題的行?) - IT屋-程序員軟件開發(fā)技
      2. <legend id='6SF1i'><style id='6SF1i'><dir id='6SF1i'><q id='6SF1i'></q></dir></style></legend>
        <tfoot id='6SF1i'></tfoot>

        <small id='6SF1i'></small><noframes id='6SF1i'>

            <bdo id='6SF1i'></bdo><ul id='6SF1i'></ul>
            <i id='6SF1i'><tr id='6SF1i'><dt id='6SF1i'><q id='6SF1i'><span id='6SF1i'><b id='6SF1i'><form id='6SF1i'><ins id='6SF1i'></ins><ul id='6SF1i'></ul><sub id='6SF1i'></sub></form><legend id='6SF1i'></legend><bdo id='6SF1i'><pre id='6SF1i'><center id='6SF1i'></center></pre></bdo></b><th id='6SF1i'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='6SF1i'><tfoot id='6SF1i'></tfoot><dl id='6SF1i'><fieldset id='6SF1i'></fieldset></dl></div>
              <tbody id='6SF1i'></tbody>

                • 本文介紹了Pyspark DataFrameWriter jdbc 函數(shù)的 ignore 選項(xiàng)是忽略整個(gè)事務(wù)還是只是有問題的行?的處理方法,對(duì)大家解決問題具有一定的參考價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)吧!

                  問題描述

                  Pyspark DataFrameWriter 類有一個(gè) jdbc 函數(shù) 用于將數(shù)據(jù)幀寫入 sql.這個(gè)函數(shù)有一個(gè) --ignore 選項(xiàng),文檔說:

                  The Pyspark DataFrameWriter class has a jdbc function for writing a dataframe to sql. This function has an --ignore option that the documentation says will:

                  如果數(shù)據(jù)已經(jīng)存在,則靜默忽略此操作.

                  Silently ignore this operation if data already exists.

                  但是它會(huì)忽略整個(gè)事務(wù),還是只會(huì)忽略插入重復(fù)的行?如果我將 --ignore--append 標(biāo)志結(jié)合起來會(huì)怎樣?行為會(huì)改變嗎?

                  But will it ignore the entire transaction, or will it only ignore inserting the rows that are duplicates? What if I were to combine --ignore with the --append flag? Would the behavior change?

                  推薦答案

                  mode("ingore") 如果表(或另一個(gè)接收器)已經(jīng)存在并且無法組合寫入模式,則只是 NOOP.如果您正在尋找諸如 INSERT IGNOREINSERT INTO ... WHERE NOT EXISTS ... 之類的內(nèi)容,則必須手動(dòng)執(zhí)行,例如使用 mapPartitions.

                  mode("ingore") is just NOOP if table (or another sink) already exists and writing modes cannot be combined. If you're looking for something like INSERT IGNORE or INSERT INTO ... WHERE NOT EXISTS ... you'll have to do it manually, for example with mapPartitions.

                  這篇關(guān)于Pyspark DataFrameWriter jdbc 函數(shù)的 ignore 選項(xiàng)是忽略整個(gè)事務(wù)還是只是有問題的行?的文章就介紹到這了,希望我們推薦的答案對(duì)大家有所幫助,也希望大家多多支持html5模板網(wǎng)!

                  【網(wǎng)站聲明】本站部分內(nèi)容來源于互聯(lián)網(wǎng),旨在幫助大家更快的解決問題,如果有圖片或者內(nèi)容侵犯了您的權(quán)益,請(qǐng)聯(lián)系我們刪除處理,感謝您的支持!

                  相關(guān)文檔推薦

                  How to use windowing functions efficiently to decide next N number of rows based on N number of previous values(如何有效地使用窗口函數(shù)根據(jù) N 個(gè)先前值來決定接下來的 N 個(gè)行)
                  reuse the result of a select expression in the quot;GROUP BYquot; clause?(在“GROUP BY中重用選擇表達(dá)式的結(jié)果;條款?)
                  Error while using INSERT INTO table ON DUPLICATE KEY, using a for loop array(使用 INSERT INTO table ON DUPLICATE KEY 時(shí)出錯(cuò),使用 for 循環(huán)數(shù)組)
                  pyspark mysql jdbc load An error occurred while calling o23.load No suitable driver(pyspark mysql jdbc load 調(diào)用 o23.load 時(shí)發(fā)生錯(cuò)誤 沒有合適的驅(qū)動(dòng)程序)
                  How to integrate Apache Spark with MySQL for reading database tables as a spark dataframe?(如何將 Apache Spark 與 MySQL 集成以將數(shù)據(jù)庫(kù)表作為 Spark 數(shù)據(jù)幀讀取?)
                  In Apache Spark 2.0.0, is it possible to fetch a query from an external database (rather than grab the whole table)?(在 Apache Spark 2.0.0 中,是否可以從外部數(shù)據(jù)庫(kù)獲取查詢(而不是獲取整個(gè)表)?) - IT屋-程序員軟件開

                    1. <small id='9YDIo'></small><noframes id='9YDIo'>

                        <i id='9YDIo'><tr id='9YDIo'><dt id='9YDIo'><q id='9YDIo'><span id='9YDIo'><b id='9YDIo'><form id='9YDIo'><ins id='9YDIo'></ins><ul id='9YDIo'></ul><sub id='9YDIo'></sub></form><legend id='9YDIo'></legend><bdo id='9YDIo'><pre id='9YDIo'><center id='9YDIo'></center></pre></bdo></b><th id='9YDIo'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='9YDIo'><tfoot id='9YDIo'></tfoot><dl id='9YDIo'><fieldset id='9YDIo'></fieldset></dl></div>

                          <bdo id='9YDIo'></bdo><ul id='9YDIo'></ul>
                            <tbody id='9YDIo'></tbody>
                          <tfoot id='9YDIo'></tfoot>
                            <legend id='9YDIo'><style id='9YDIo'><dir id='9YDIo'><q id='9YDIo'></q></dir></style></legend>
                            主站蜘蛛池模板: 草久在线视频 | 日韩一区不卡 | 99精品国产一区二区三区 | 国产伦精品一区二区三区四区视频 | 98久久| 日韩一区二区在线视频 | 黄视频国产| 国产精品18毛片一区二区 | 麻豆一区二区三区精品视频 | 国产精品久久久久久52avav | 国产精品久久久久久久久久不蜜臀 | 国产成人精品综合 | 国产高清精品在线 | 夜夜爽99久久国产综合精品女不卡 | 超碰精品在线 | 91免费观看视频 | 爱高潮www亚洲精品 中文字幕免费视频 | 九九99久久 | 四虎成人免费视频 | 欧美中文字幕在线观看 | 一区二区精品 | 久草新在线 | 免费国产视频在线观看 | 日韩精品一区二区三区 | 日韩不卡一区二区三区 | 欧美aaaaaa| 91中文在线观看 | 99久久99久久精品国产片果冰 | 精品国产乱码一区二区三区 | 黄色av免费网站 | 国产亚洲精品久久久久久豆腐 | 日本一区二区三区视频在线 | 一级免费毛片 | 国产免费一区二区三区最新6 | 日韩av免费在线观看 | 中文字幕日韩欧美一区二区三区 | 久久精品国产免费 | 精品欧美激情在线观看 | 日日噜噜夜夜爽爽狠狠 | 中文字幕免费观看 | 午夜小电影 |