問題描述
我寫了這個函數來返回給定數字的階乘
func 階乘(_ n: Int) ->詮釋{如果 n == 0 {返回 1}別的 {返回 n * 階乘(n - 1)}}打印(階乘(20))//2432902008176640000
只要給定的數字不超過 20,就可以正常工作,因為那樣結果就太高了!
我怎樣才能繞過這個限制,從而計算更高數字的階乘?
我四處搜索并找到了一些用于 Swift 的 bignum 庫.我這樣做是為了學習和熟悉 Swift,因此我想自己解決這個問題.
這里有一個方法可以讓你找到非常大的階乘.
將大數表示為數字數組.例如 987
將是 [9, 8, 7]
.將該數字乘以整數 n
需要兩個步驟.
- 將該數組中的每個值乘以
n
. - 執行進位運算以返回再次為單個數字的結果.
例如987 * 2
:
讓 arr = [9, 8, 7]讓 arr2 = arr.map { $0 * 2 }print(arr2)//[18, 16, 14]
現在,執行進位操作.從個位數開始,14
太大了,所以保留4
,攜帶1
.將1
添加到16
得到17
.
[18, 17, 4]
重復十位:
[19, 7, 4]
然后是百位:
[1, 9, 7, 4]
最后,為了打印,您可以將其轉換回字符串:
讓 arr = [1, 9, 7, 4]打印(arr.map(String.init).joined())
<塊引用>
1974
<小時>
應用該技術,這里有一個執行進位操作的 carryAll
函數,以及一個使用它來計算非常大的階乘的 factorial
:
func carryAll(_ arr: [Int]) ->[詮釋] {var 結果 = [整數]()var 進位 = 0對于 arr.reversed() 中的 val {讓總計 = val + 進位讓數字 = 總計 % 10進位 = 總數/10結果.追加(數字)}同時攜帶>0 {讓數字 = 攜帶 % 10進位 = 進位/10結果.追加(數字)}返回結果.reversed()}func 階乘(_ n: Int)->細繩 {變量結果 = [1]對于我在 2...n {結果 = 結果.map { $0 * i }結果 = 攜帶所有(結果)}返回結果.map(String.init).joined()}打印(階乘(1000))
<塊引用>
4023872600770937735437024339230039857193748642107146325437999104299385123986290205920442084869694048004799886101971960586316668729948085589013238296699445909974245040870737599188236277271887325197795059509952761208749754624970436014182780946464962910563938874378864873371191810458257836478499770124766328898359557354325131853239584630755574091142624174743493475534286465766116677973966688202912073791438537195882498081268678383745597317461360853795345242215865932019280908782973084313928444032812315586110369768013573042161687476096758713483120254785893207671691324484262361314125087802080002616831510273418279777047846358681701643650241536913982812648102130927612448963599287051149649754199093422215668325720808213331861168115536??15836546984046708975602900950537616475847728421889679646244945160765353408198901385442487984959953319101723355556602139450399736280750137837615307127761926849034352625200015888535147331611702103968175921510907788019393178114194545257223865541461062892187960223838971476088506276862967146674697562911234082439208160153780889893964518263243671616762179168909779911903754031274622289988005195444414282012187361745992642956581746628302955570299024324153181617210465832036786906117260158783520751516284225540265170483304226143974286933061690897968482590125458327168226458066526769958652682272807075781391858178889652208164348344825993266043367660176999612831860788386150279465955131156552036093988180612138558600301435694527224206344631797460594682573103790084024432438465657245014402821885252470935190620929023136493273497565513958720559654228749774011413346962715422845862377387538230483865688976461927383814900140767310446640259899490222221765904339901886018566526485061799702356193897017860040811889729918311021171229845901641921068884387121855646124960798722908519296819372388642614839657382291123125024186649353143970137428531926649875337218940694281434118520158014123344828015051399694290153483077644569099073152433278288269864602789864321139083506217095002597389863554277196742822248757586765752344220207573630569498825087968928162753848863396909959826280956121450994871701244516461260379029309120889086942028510640182154399457156805941872748998094254742173582401063677404595741785160829230135358081840096996372524230560855903700624271243416909004153690105933983835777939410970027753472000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
I have written this function to return the factorial of a given number
func factorial(_ n: Int) -> Int {
if n == 0 {
return 1
}
else {
return n * factorial(n - 1)
}
}
print( factorial(20) ) // 2432902008176640000
Works as it should, as long the given number does not exceed 20, because then the result becomes too high!
How can I circumvent this limit and thus calculate the factorial of higher numbers?
I have searched around and found some bignum libraries for Swift. I'm doing this to learn and be familiar with Swift, therefore I want to figure this out on my own.
Here's an approach that will let you find very large factorials.
Represent large numbers as an array of digits. For instance 987
would be [9, 8, 7]
. Multiplying that number by an integer n
would require two steps.
- Multiply each value in that array by
n
. - Perform a carry operation to return a result that is again single digits.
For example 987 * 2
:
let arr = [9, 8, 7]
let arr2 = arr.map { $0 * 2 }
print(arr2) // [18, 16, 14]
Now, perform the carry operation. Starting at the one's digit, 14
is too big, so keep the 4
and carry the 1
. Add the 1
to 16
to get 17
.
[18, 17, 4]
Repeat with the ten's place:
[19, 7, 4]
And then with the hundred's place:
[1, 9, 7, 4]
Finally, for printing, you could convert this back to a string:
let arr = [1, 9, 7, 4]
print(arr.map(String.init).joined())
1974
Applying that technique, here is a carryAll
function that performs the carry operation, and a factorial
that uses it to calculate very large factorials:
func carryAll(_ arr: [Int]) -> [Int] {
var result = [Int]()
var carry = 0
for val in arr.reversed() {
let total = val + carry
let digit = total % 10
carry = total / 10
result.append(digit)
}
while carry > 0 {
let digit = carry % 10
carry = carry / 10
result.append(digit)
}
return result.reversed()
}
func factorial(_ n: Int) -> String {
var result = [1]
for i in 2...n {
result = result.map { $0 * i }
result = carryAll(result)
}
return result.map(String.init).joined()
}
print(factorial(1000))
402387260077093773543702433923003985719374864210714632543799910429938512398629020592044208486969404800479988610197196058631666872994808558901323829669944590997424504087073759918823627727188732519779505950995276120874975462497043601418278094646496291056393887437886487337119181045825783647849977012476632889835955735432513185323958463075557409114262417474349347553428646576611667797396668820291207379143853719588249808126867838374559731746136085379534524221586593201928090878297308431392844403281231558611036976801357304216168747609675871348312025478589320767169132448426236131412508780208000261683151027341827977704784635868170164365024153691398281264810213092761244896359928705114964975419909342221566832572080821333186116811553615836546984046708975602900950537616475847728421889679646244945160765353408198901385442487984959953319101723355556602139450399736280750137837615307127761926849034352625200015888535147331611702103968175921510907788019393178114194545257223865541461062892187960223838971476088506276862967146674697562911234082439208160153780889893964518263243671616762179168909779911903754031274622289988005195444414282012187361745992642956581746628302955570299024324153181617210465832036786906117260158783520751516284225540265170483304226143974286933061690897968482590125458327168226458066526769958652682272807075781391858178889652208164348344825993266043367660176999612831860788386150279465955131156552036093988180612138558600301435694527224206344631797460594682573103790084024432438465657245014402821885252470935190620929023136493273497565513958720559654228749774011413346962715422845862377387538230483865688976461927383814900140767310446640259899490222221765904339901886018566526485061799702356193897017860040811889729918311021171229845901641921068884387121855646124960798722908519296819372388642614839657382291123125024186649353143970137428531926649875337218940694281434118520158014123344828015051399694290153483077644569099073152433278288269864602789864321139083506217095002597389863554277196742822248757586765752344220207573630569498825087968928162753848863396909959826280956121450994871701244516461260379029309120889086942028510640182154399457156805941872748998094254742173582401063677404595741785160829230135358081840096996372524230560855903700624271243416909004153690105933983835777939410970027753472000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
這篇關于在 Swift 3 中,當結果變得太高時如何計算階乘?的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網!