久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

OMP:錯誤 #15:正在初始化 libiomp5.dylib,但發(fā)現(xiàn) lib

OMP: Error #15: Initializing libiomp5.dylib, but found libiomp5.dylib already initialized(OMP:錯誤 #15:正在初始化 libiomp5.dylib,但發(fā)現(xiàn) libiomp5.dylib 已初始化)
本文介紹了OMP:錯誤 #15:正在初始化 libiomp5.dylib,但發(fā)現(xiàn) libiomp5.dylib 已初始化的處理方法,對大家解決問題具有一定的參考價值,需要的朋友們下面隨著小編來一起學習吧!

問題描述

我正在嘗試運行一個測試程序來檢查我的 Anaconda 環(huán)境是否配置正確.但是,當我運行我的測試程序時,我會在程序設(shè)置圖形時收到此錯誤消息(準確地說是 on_train_end() 回調(diào)):

I'm trying to run a test program to check if my Anaconda environment is configured correctly. However, when I run my test program I get this error message when the program is setting up graph (on_train_end() callback to be precise):

OMP:錯誤 #15:正在初始化 libiomp5.dylib,但找到了 libiomp5.dylib已經(jīng)初始化.OMP:提示 這意味著 OpenMP 運行時的多個副本已經(jīng)存在,因為它會降低性能或?qū)е虏徽_的結(jié)果.最好的辦法是確保只有一個 OpenMP 運行時鏈接到進程中,例如通過避免在任何庫中靜態(tài)鏈接 OpenMP 運行時.作為一種不安全、不受支持、未記錄的解決方法,您可以設(shè)置環(huán)境變量 KMP_DUPLICATE_LIB_OK=TRUE 以允許程序繼續(xù)執(zhí)行,但這可能會導致崩潰或默默地產(chǎn)生不正確的結(jié)果.如需更多信息,請參閱 http://www.intel.com/software/products/support/.

OMP: Error #15: Initializing libiomp5.dylib, but found libiomp5.dylib already initialized. OMP: Hint This means that multiple copies of the OpenMP runtime have been since it can degrade performance or cause incorrect results. The best thing to do is to ensure that only a single OpenMP runtime is linked into the process, e.g. by avoiding static linking of the OpenMP runtime in any library. As an unsafe, unsupported, undocumented workaround you can set the environment variable KMP_DUPLICATE_LIB_OK=TRUE to allow the program to continue to execute, but that may cause crashes or silently produce incorrect results. For more information, please see http://www.intel.com/software/products/support/.

我正在安裝 macOS Mojave 10.14.1 的 MacBook Pro 15" 2015 上運行測試程序.我目前安裝的 Anaconda 發(fā)行版是 https://repo.anaconda.com/archive/Anaconda2-5.3.0-MacOSX-x86_64.sh.

I'm running the test program on my MacBook Pro 15" 2015 where it is installed macOS Mojave 10.14.1. The Anaconda distribution that I have currently installed is https://repo.anaconda.com/archive/Anaconda2-5.3.0-MacOSX-x86_64.sh.

這是測試程序:

#!/usr/bin/env python

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

from tensorflow import keras

Xs = np.array([
    [0, 0],
    [0, 1],
    [1, 1],
    [1, 0]
])

Ys = np.array([
    [0],
    [1],
    [0],
    [1]
])

class MyCallback(keras.callbacks.Callback):
    def __init__(self):
        super(MyCallback, self).__init__()
        self.stats = []

    def on_epoch_end(self, epoch, logs=None):
        self.stats.append({
            'loss': logs['loss'],
            'acc': logs['acc'],
            'epoch': epoch
        })

    def on_train_end(self, logs=None):
        loss_x = []
        loss_y = []
        acc_x = []
        acc_y = []
        for e in self.stats:
            loss_x.append(e['epoch'])
            loss_y.append(e['loss'])
            acc_x.append(e['epoch'])
            acc_y.append(e['acc'])
        plt.plot(loss_x, loss_y, 'r', label='Loss')
        plt.plot(acc_x, acc_y, 'b', label='Accuracy')
        plt.xlabel('Epochs')
        plt.ylabel('Loss / Accuracy')
        plt.legend(loc='upper left')
        plt.show()

with tf.Session() as session:
    model = keras.models.Sequential()

    model.add(keras.layers.Dense(10, activation=keras.activations.elu, input_dim=2))
    model.add(keras.layers.Dense(1, activation=keras.activations.sigmoid))

    model.compile(optimizer=keras.optimizers.Adam(lr=0.05),
                  loss=keras.losses.mean_squared_error,
                  metrics=['accuracy'])

    model.fit(x=Xs, y=Ys, batch_size=4, epochs=50, callbacks=[MyCallback()])

    print("Training complete")

    loss, acc = model.evaluate(Xs, Ys)

    print(f"loss: {loss} - acc: {acc}")

    predictions = model.predict(Xs)

    print("predictions")
    print(predictions)

我已經(jīng)嘗試參考 答案initial">this 相關(guān)問題.因此,在 import 部分之后添加以下代碼行:

I already tried to fix the issue referencing to the answer of this related question. Thus, adding the following lines of code after the import section:

import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'

我得到的是另一個錯誤消息,這是完整的堆棧跟蹤:

What I get is another error message, this is the full stack trace:

2018-12-06 10:18:34.262 python[19319:371282] -[NSApplication _setup:]: unrecognized selector sent to instance 0x7ff2b07a3d00
2018-12-06 10:18:34.266 python[19319:371282] *** Terminating app due to uncaught exception 'NSInvalidArgumentException', reason: '-[NSApplication _setup:]: unrecognized selector sent to instance 0x7ff2b07a3d00'
*** First throw call stack:
(
        0   CoreFoundation                      0x00007fff2ccf0e65 __exceptionPreprocess + 256
        1   libobjc.A.dylib                     0x00007fff58d47720 objc_exception_throw + 48
        2   CoreFoundation                      0x00007fff2cd6e22d -[NSObject(NSObject) __retain_OA] + 0
        3   CoreFoundation                      0x00007fff2cc92820 ___forwarding___ + 1486
        4   CoreFoundation                      0x00007fff2cc921c8 _CF_forwarding_prep_0 + 120
        5   libtk8.6.dylib                      0x0000000b36aeb31d TkpInit + 413
        6   libtk8.6.dylib                      0x0000000b36a4317e Initialize + 2622
        7   _tkinter.cpython-36m-darwin.so      0x0000000b3686ba16 _tkinter_create + 1174
        8   python                              0x000000010571c088 _PyCFunction_FastCallDict + 200
        9   python                              0x00000001057f2f4f call_function + 143
        10  python                              0x00000001057f0abf _PyEval_EvalFrameDefault + 46847
        11  python                              0x00000001057e4209 _PyEval_EvalCodeWithName + 425
        12  python                              0x00000001057f3b1c _PyFunction_FastCallDict + 364
        13  python                              0x000000010569a8b0 _PyObject_FastCallDict + 320
        14  python                              0x00000001056c1fe8 method_call + 136
        15  python                              0x00000001056a1efe PyObject_Call + 62
        16  python                              0x0000000105743385 slot_tp_init + 117
        17  python                              0x00000001057478c1 type_call + 241
        18  python                              0x000000010569a821 _PyObject_FastCallDict + 177
        19  python                              0x00000001056a2a67 _PyObject_FastCallKeywords + 327
        20  python                              0x00000001057f3048 call_function + 392
        21  python                              0x00000001057f0b6f _PyEval_EvalFrameDefault + 47023
        22  python                              0x00000001057f330c fast_function + 188
        23  python                              0x00000001057f2fac call_function + 236
        24  python                              0x00000001057f0abf _PyEval_EvalFrameDefault + 46847
        25  python                              0x00000001057e4209 _PyEval_EvalCodeWithName + 425
        26  python                              0x00000001057f3b1c _PyFunction_FastCallDict + 364
        27  python                              0x000000010569a8b0 _PyObject_FastCallDict + 320
        28  python                              0x00000001056c1fe8 method_call + 136
        29  python                              0x00000001056a1efe PyObject_Call + 62
        30  python                              0x00000001057f0cc0 _PyEval_EvalFrameDefault + 47360
        31  python                              0x00000001057e4209 _PyEval_EvalCodeWithName + 425
        32  python                              0x00000001057f33ba fast_function + 362
        33  python                              0x00000001057f2fac call_function + 236
        34  python                              0x00000001057f0abf _PyEval_EvalFrameDefault + 46847
        35  python                              0x00000001057f330c fast_function + 188
        36  python                              0x00000001057f2fac call_function + 236
        37  python                              0x00000001057f0abf _PyEval_EvalFrameDefault + 46847
        38  python                              0x00000001057e4209 _PyEval_EvalCodeWithName + 425
        39  python                              0x00000001057f33ba fast_function + 362
        40  python                              0x00000001057f2fac call_function + 236
        41  python                              0x00000001057f0abf _PyEval_EvalFrameDefault + 46847
        42  python                              0x00000001057e4209 _PyEval_EvalCodeWithName + 425
        43  python                              0x00000001057f33ba fast_function + 362
        44  python                              0x00000001057f2fac call_function + 236
        45  python                              0x00000001057f0b6f _PyEval_EvalFrameDefault + 47023
        46  python                              0x00000001057e4209 _PyEval_EvalCodeWithName + 425
        47  python                              0x00000001057f33ba fast_function + 362
        48  python                              0x00000001057f2fac call_function + 236
        49  python                              0x00000001057f0abf _PyEval_EvalFrameDefault + 46847
        50  python                              0x00000001057e4209 _PyEval_EvalCodeWithName + 425
        51  python                              0x00000001057f33ba fast_function + 362
        52  python                              0x00000001057f2fac call_function + 236
        53  python                              0x00000001057f0abf _PyEval_EvalFrameDefault + 46847
        54  python                              0x00000001057e4209 _PyEval_EvalCodeWithName + 425
        55  python                              0x00000001057f33ba fast_function + 362
        56  python                              0x00000001057f2fac call_function + 236
        57  python                              0x00000001057f0b6f _PyEval_EvalFrameDefault + 47023
        58  python                              0x00000001057e4209 _PyEval_EvalCodeWithName + 425
        59  python                              0x00000001057f33ba fast_function + 362
        60  python                              0x00000001057f2fac call_function + 236
        61  python                              0x00000001057f0b6f _PyEval_EvalFrameDefault + 47023
        62  python                              0x00000001057e4209 _PyEval_EvalCodeWithName + 425
        63  python                              0x000000010583cd4c PyRun_FileExFlags + 252
        64  python                              0x000000010583c224 PyRun_SimpleFileExFlags + 372
        65  python                              0x0000000105862d66 Py_Main + 3734
        66  python                              0x0000000105692929 main + 313
        67  libdyld.dylib                       0x00007fff59e1608d start + 1
        68  ???                                 0x0000000000000002 0x0 + 2
)
libc++abi.dylib: terminating with uncaught exception of type NSException

這里是環(huán)境中安裝的相關(guān)依賴的列表(不相關(guān)的依賴為了簡潔省略):

Here is a list of the related dependencies installed in the environment (not related dependencies are omitted for brevity):

Name                |     Version                      Build
--------------------|----------------|----------------------
_tflow_select       |     2.3.0      |                   mkl
blas                |     1.0        |                   mkl
intel-openmp        |     2019.1     |                   144
matplotlib          |     3.0.1      |        py36h54f8f79_0
mkl                 |     2018.0.3   |                     1
mkl_fft             |     1.0.6      |        py36hb8a8100_0
mkl_random          |     1.0.1      |        py36h5d10147_1
numpy               |     1.15.4     |        py36h6a91979_0
numpy-base          |     1.15.4     |        py36h8a80b8c_0
tensorboard         |     1.12.0     |        py36hdc36e2c_0
tensorflow          |     1.12.0     |    mkl_py36h2b2bbaf_0
tensorflow-base     |     1.12.0     |    mkl_py36h70e0e9a_0

推薦答案

在大多數(shù)情況下,這樣可以解決問題:

In most cases, this solves the problem:

conda install nomkl

這篇關(guān)于OMP:錯誤 #15:正在初始化 libiomp5.dylib,但發(fā)現(xiàn) libiomp5.dylib 已初始化的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網(wǎng)!

【網(wǎng)站聲明】本站部分內(nèi)容來源于互聯(lián)網(wǎng),旨在幫助大家更快的解決問題,如果有圖片或者內(nèi)容侵犯了您的權(quán)益,請聯(lián)系我們刪除處理,感謝您的支持!

相關(guān)文檔推薦

Troubles while parsing with python very large xml file(使用 python 解析非常大的 xml 文件時出現(xiàn)問題)
Find all nodes by attribute in XML using Python 2(使用 Python 2 在 XML 中按屬性查找所有節(jié)點)
Python - How to parse xml response and store a elements value in a variable?(Python - 如何解析 xml 響應(yīng)并將元素值存儲在變量中?)
How to get XML tag value in Python(如何在 Python 中獲取 XML 標記值)
How to correctly parse utf-8 xml with ElementTree?(如何使用 ElementTree 正確解析 utf-8 xml?)
Parse XML from URL into python object(將 XML 從 URL 解析為 python 對象)
主站蜘蛛池模板: 国产一区二区三区在线视频 | 黄色毛片免费视频 | 欧美一区二区三区在线免费观看 | 午夜亚洲 | 欧一区 | 免费黄色大片 | 91视频免费视频 | 中文字幕男人的天堂 | 在线播放亚洲 | 亚洲精品久久久久中文字幕欢迎你 | 欧美不卡在线 | 亚洲欧美少妇 | 国产美女在线观看 | 91视频在线 | 在线观看中文字幕亚洲 | 精品一级 | 中文字幕一区二区三区精彩视频 | 国产一二三区电影 | 久久九九99 | 91av视频在线 | 欧美日韩精品亚洲 | 欧美一级免费黄色片 | 亚洲三区视频 | 国产精品成人av | 日韩影音| 三级黄色片在线观看 | 91视频在线看 | 另类亚洲视频 | 黄网址在线观看 | 97超碰人人| 久久久久久国产一区二区三区 | 日韩久久中文字幕 | 中文字幕在线视频精品 | 午夜精品视频在线观看 | 欧美a级成人淫片免费看 | 国产精品无码久久久久 | 亚洲视频在线一区 | 91视频免费在观看 | 日韩欧美精品一区 | 日韩毛片免费看 | 久久噜|