久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

Anaconda vs. EPD Enthought vs. Python 的手動(dòng)安裝

Anaconda vs. EPD Enthought vs. manual installation of Python(Anaconda vs. EPD Enthought vs. Python 的手動(dòng)安裝)
本文介紹了Anaconda vs. EPD Enthought vs. Python 的手動(dòng)安裝的處理方法,對(duì)大家解決問題具有一定的參考價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)吧!

問題描述

各種 Python 包(EPD/Anaconda)與手動(dòng)安裝相比有哪些優(yōu)缺點(diǎn)?

What are the relative merits / downsides of various Python bundles (EPD / Anaconda) vs. a manual install?

我已經(jīng)安裝了 EPD Academic,我對(duì)此沒有任何問題.它提供了更多我認(rèn)為我將需要的軟件包,并且使用 enpkg enstaller 很容易更新.EPD 學(xué)術(shù)許可證需要每年更新一次,但免費(fèi)版本的更新并不容易.

I have installed EPD academic, and I have no issues with it. It provides more packages that I think I will ever need, and it is very easy to update using enpkg enstaller. The EPD academic licence requires yearly renewal however and the free version does not do updates as easily.

目前我真的只使用少數(shù)幾個(gè)包,例如 Pandas、NumPy, SciPy, matplotlib, IPython,Statsmodels 及其各自的依賴項(xiàng).

At the moment I really only use a handful of packages such as Pandas, NumPy, SciPy, matplotlib, IPython, Statsmodels and their respective dependencies.

對(duì)于這種有限的使用,我最好手動(dòng)安裝和 pip install --upgrade 'package' 還是捆綁包提供除此之外的任何東西?

For such limited use am I better off with manual install and pip install --upgrade 'package' or do the bundles offer anything over and above this?

推薦答案

2015 年更新:現(xiàn)在我總是推薦 Anaconda.它包含許多用于科學(xué)計(jì)算、數(shù)據(jù)科學(xué)、Web 開發(fā)等的 Python 包.它還提供了一個(gè)出色的環(huán)境工具 conda,它允許在環(huán)境之間輕松切換,甚至在 Python 2 和 Python 3 之間切換.包的新版本一發(fā)布它也會(huì)很快更新,你可以通過 conda update packagename 來更新它.

Update 2015: Nowadays I always recommend Anaconda. It includes lots of Python packages for scientific computing, data science, web development, etc. It also provides a superior environment tool, conda, which allows to easily switch between environments, even between Python 2 and 3. It is also updated very quickly as soon as a new version of a package is released, and you can just do conda update packagename to update it.

原答案如下:

在 Windows 上,編譯數(shù)學(xué)包很復(fù)雜,所以我認(rèn)為只有當(dāng)您只對(duì) Python 感興趣而沒有其他包時(shí),手動(dòng)安裝才是一個(gè)可行的選擇.

On Windows, what is complicated is to compile the math packages, so I think a manual install is a viable option only if you are interested only in Python, without other packages.

因此最好選擇 EPD(現(xiàn)在的 Canopy)或 Anaconda.

Therefore better chose either EPD (now Canopy) or Anaconda.

Anaconda 有大約 270 個(gè)包,包括對(duì)大多數(shù)科學(xué)應(yīng)用和數(shù)據(jù)分析最重要的包,即 NumPy, SciPy, 熊貓, IPython, matplotlib, Scikit-learn.所以如果這對(duì)你來說足夠了,我會(huì)選擇 Anaconda.

Anaconda has around 270 packages, including the most important for most scientific applications and data analysis, that is, NumPy, SciPy, Pandas, IPython, matplotlib, Scikit-learn. So if this is enough for you, I would choose Anaconda.

相反,如果您對(duì)其他軟件包感興趣,甚至如果您使用任何 Enthought 軟件包(Chaco 例如對(duì)于實(shí)時(shí)數(shù)據(jù)可視化非常有用),那么 EPD/Canopy 可能是更好的選擇.學(xué)術(shù)版在基礎(chǔ)安裝中有更多的軟件包,在存儲(chǔ)庫(kù)中還有更多.Anaconda 還包括 Chaco.

Instead, if you are interested in other packages, and even more if you use any of the Enthought packages (Chaco for example is very useful for realtime data visualization), then EPD/Canopy is probably a better choice. The Academic version has a larger number of packages in the base install, and many more in the repository. Anaconda also includes Chaco.

這篇關(guān)于Anaconda vs. EPD Enthought vs. Python 的手動(dòng)安裝的文章就介紹到這了,希望我們推薦的答案對(duì)大家有所幫助,也希望大家多多支持html5模板網(wǎng)!

【網(wǎng)站聲明】本站部分內(nèi)容來源于互聯(lián)網(wǎng),旨在幫助大家更快的解決問題,如果有圖片或者內(nèi)容侵犯了您的權(quán)益,請(qǐng)聯(lián)系我們刪除處理,感謝您的支持!

相關(guān)文檔推薦

Troubles while parsing with python very large xml file(使用 python 解析非常大的 xml 文件時(shí)出現(xiàn)問題)
Find all nodes by attribute in XML using Python 2(使用 Python 2 在 XML 中按屬性查找所有節(jié)點(diǎn))
Python - How to parse xml response and store a elements value in a variable?(Python - 如何解析 xml 響應(yīng)并將元素值存儲(chǔ)在變量中?)
How to get XML tag value in Python(如何在 Python 中獲取 XML 標(biāo)記值)
How to correctly parse utf-8 xml with ElementTree?(如何使用 ElementTree 正確解析 utf-8 xml?)
Parse XML from URL into python object(將 XML 從 URL 解析為 python 對(duì)象)
主站蜘蛛池模板: 天天综合网7799精品 | 国产一区二区久久 | 污污免费网站 | av免费网址 | 日韩at| 久久久久国产精品一区二区 | 欧美日韩精品 | 综合国产在线 | 亚洲成人自拍 | 久久久久久久综合 | 国产高清视频在线 | 成人在线网 | 久久综合久久综合久久 | 欧美精品综合在线 | 国产成人精品免费视频大全最热 | 精品国产一区二区在线 | 精品国产乱码久久久久久丨区2区 | 日韩精品一区二区三区在线 | 国产黄色在线 | 九九精品在线 | 亚洲综合色视频在线观看 | 一级黄色片免费 | 在线观看av不卡 | 久草.com | 国产精品免费高清 | 欧美日韩三级 | 天天干夜夜操 | www.亚洲一区二区 | 亚洲福利 | 久久久久久综合 | 国产小视频在线 | 亚洲九色 | www日韩 | 天天射视频 | 欧美1级 | 久久一二三区 | 午夜影院在线观看 | 狠狠撸在线视频 | 亚洲夜射 | 亚洲高清视频在线 | 精品国产乱码久久久久久图片 |