久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

在使用 conda tensorflow-gpu 包之前是否還需要安裝

Is it still necessary to install CUDA before using the conda tensorflow-gpu package?(在使用 conda tensorflow-gpu 包之前是否還需要安裝 CUDA?)
本文介紹了在使用 conda tensorflow-gpu 包之前是否還需要安裝 CUDA?的處理方法,對大家解決問題具有一定的參考價值,需要的朋友們下面隨著小編來一起學習吧!

問題描述

當我通過 Conda 安裝 tensorflow-gpu 時;它給了我以下輸出:

When I install tensorflow-gpu through Conda; it gives me the following output:

conda install tensorflow-gpu
Collecting package metadata (current_repodata.json): done
Solving environment: done


## Package Plan ##

  environment location: /home/psychotechnopath/anaconda3/envs/DeepLearning3.6

  added / updated specs:
    - tensorflow-gpu


The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    _tflow_select-2.1.0        |              gpu           2 KB
    cudatoolkit-10.1.243       |       h6bb024c_0       347.4 MB
    cudnn-7.6.5                |       cuda10.1_0       179.9 MB
    cupti-10.1.168             |                0         1.4 MB
    tensorflow-2.1.0           |gpu_py36h2e5cdaa_0           4 KB
    tensorflow-base-2.1.0      |gpu_py36h6c5654b_0       155.9 MB
    tensorflow-gpu-2.1.0       |       h0d30ee6_0           3 KB
    ------------------------------------------------------------
                                           Total:       684.7 MB

The following NEW packages will be INSTALLED:

  cudatoolkit        pkgs/main/linux-64::cudatoolkit-10.1.243-h6bb024c_0
  cudnn              pkgs/main/linux-64::cudnn-7.6.5-cuda10.1_0
  cupti              pkgs/main/linux-64::cupti-10.1.168-0
  tensorflow-gpu     pkgs/main/linux-64::tensorflow-gpu-2.1.0-h0d30ee6_0

我看到安裝 tensorflow-gpu 會自動觸發 cudatoolkit 和 cudnn 的安裝.這是否意味著我不再需要手動安裝 CUDA 和 CUDNN 才能使用 tensorflow-gpu?這個 CUDA 的 conda 安裝在哪里?

I see that installing tensorflow-gpu automatically triggers the installation of the cudatoolkit and cudnn. Does this mean that I no longer need to install CUDA and CUDNN manually anymore to be able to use tensorflow-gpu? Where does this conda installation of CUDA reside?

我首先以舊方式安裝了 CUDA 和 CuDNN(例如,按照以下安裝說明進行操作:https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html)

I first installed CUDA and CuDNN the old way (e.g. by following these installation instructions: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html )

然后我注意到 tensorflow-gpu 也在安裝 cuda 和 cudnn

And then I noticed that tensorflow-gpu was also installing cuda and cudnn

我現在是否安裝了兩個版本的 CUDA/CuDNN?如何檢查?

推薦答案

我現在是否安裝了兩個版本的 CUDA?如何檢查?

Do i now have two versions of CUDA installed and how do I check this?

沒有.

conda 安裝支持它們提供的 CUDA 加速包所需的最少的可再發行庫組件.包名 cudatoolkit 完全用詞不當.這不是那種事.盡管現在它的范圍比以前大大擴展了(字面意思是 5 個文件——我認為在某些時候他們一定已經從 NVIDIA 獲得了許可協議,因為其中一些不是/不在官方的"自由再分發"列表 AFAIK),它基本上仍然只是少數幾個庫.

conda installs the bare minimum redistributable library components required to support the CUDA accelerated packages they offer. The package name cudatoolkit is a complete misnomer. It is nothing of the sort. Even though it is now greatly expanded in scope from what it used to be (literally 5 files -- I think at some point they must have gotten a licensing deal from NVIDIA because some of this wasn't/isn't on the official "freely redistributable" list AFAIK), it still is basically just a handful of libraries.

你可以自己檢查一下:

cat /opt/miniconda3/conda-meta/cudatoolkit-10.1.168-0.json 
{
  "build": "0",
  "build_number": 0,
  "channel": "https://repo.anaconda.com/pkgs/main/linux-64",
  "constrains": [],
  "depends": [],
  "extracted_package_dir": "/opt/miniconda3/pkgs/cudatoolkit-10.1.168-0",
  "features": "",
  "files": [
    "lib/cudatoolkit_config.yaml",
    "lib/libcublas.so",
    "lib/libcublas.so.10",
    "lib/libcublas.so.10.2.0.168",
    "lib/libcublasLt.so",
    "lib/libcublasLt.so.10",
    "lib/libcublasLt.so.10.2.0.168",
    "lib/libcudart.so",
    "lib/libcudart.so.10.1",
    "lib/libcudart.so.10.1.168",
    "lib/libcufft.so",
    "lib/libcufft.so.10",
    "lib/libcufft.so.10.1.168",
    "lib/libcufftw.so",
    "lib/libcufftw.so.10",
    "lib/libcufftw.so.10.1.168",
    "lib/libcurand.so",
    "lib/libcurand.so.10",
    "lib/libcurand.so.10.1.168",
    "lib/libcusolver.so",
    "lib/libcusolver.so.10",
    "lib/libcusolver.so.10.1.168",
    "lib/libcusparse.so",
    "lib/libcusparse.so.10",
    "lib/libcusparse.so.10.1.168",
    "lib/libdevice.10.bc",
    "lib/libnppc.so",
    "lib/libnppc.so.10",
    "lib/libnppc.so.10.1.168",
    "lib/libnppial.so",
    "lib/libnppial.so.10",
    "lib/libnppial.so.10.1.168",
    "lib/libnppicc.so",
    "lib/libnppicc.so.10",
    "lib/libnppicc.so.10.1.168",
    "lib/libnppicom.so",
    "lib/libnppicom.so.10",
    "lib/libnppicom.so.10.1.168",
    "lib/libnppidei.so",
    "lib/libnppidei.so.10",
    "lib/libnppidei.so.10.1.168",
    "lib/libnppif.so",
    "lib/libnppif.so.10",
    "lib/libnppif.so.10.1.168",
    "lib/libnppig.so",
    "lib/libnppig.so.10",
    "lib/libnppig.so.10.1.168",
    "lib/libnppim.so",
    "lib/libnppim.so.10",
    "lib/libnppim.so.10.1.168",
    "lib/libnppist.so",
    "lib/libnppist.so.10",
    "lib/libnppist.so.10.1.168",
    "lib/libnppisu.so",
    "lib/libnppisu.so.10",
    "lib/libnppisu.so.10.1.168",
    "lib/libnppitc.so",
    "lib/libnppitc.so.10",
    "lib/libnppitc.so.10.1.168",
    "lib/libnpps.so",
    "lib/libnpps.so.10",
    "lib/libnpps.so.10.1.168",
    "lib/libnvToolsExt.so",
    "lib/libnvToolsExt.so.1",
    "lib/libnvToolsExt.so.1.0.0",
    "lib/libnvblas.so",
    "lib/libnvblas.so.10",
    "lib/libnvblas.so.10.2.0.168",
    "lib/libnvgraph.so",
    "lib/libnvgraph.so.10",
    "lib/libnvgraph.so.10.1.168",
    "lib/libnvjpeg.so",
    "lib/libnvjpeg.so.10",
    "lib/libnvjpeg.so.10.1.168",
    "lib/libnvrtc-builtins.so",
    "lib/libnvrtc-builtins.so.10.1",
    "lib/libnvrtc-builtins.so.10.1.168",
    "lib/libnvrtc.so",
    "lib/libnvrtc.so.10.1",
    "lib/libnvrtc.so.10.1.168",
    "lib/libnvvm.so",
    "lib/libnvvm.so.3",
    "lib/libnvvm.so.3.3.0"
  ]

  .....

即你得到的是(記住上面的大多數文件"只是符號鏈接)

i.e. what you get is (keeping in mind most of those "files" above are just symlinks)

  • CUBLAS 運行時
  • CUDA 運行時庫
  • CUFFT 運行時
  • CU 和運行時
  • CUsparse rutime
  • CUsolver 運行時
  • NPP 運行時
  • nvblas 運行時
  • NVTX 運行時
  • NVgraph 運行時
  • NVjpeg 運行時
  • NVRTC/NVVM 運行時

conda 安裝的 CUDNN 包是可再分發的二進制分發包,它與 NVIDIA 分發的包完全相同,即兩個文件,一個頭文件和一個庫.

The CUDNN package that conda installs is the redistributable binary distribution which is identical to what NVIDIA distribute -- which is exactly two files, a header file and a library.

您仍然需要安裝受支持的 NVIDIA 驅動程序才能使 conda 安裝的 tensorflow 工作.

You would still require a supported NVIDIA driver installation to make the tensorflow which conda installs work.

如果您想真正編譯和構建 CUDA 代碼,您需要安裝一個單獨的 CUDA 工具包,其中包含 conda 故意從其發行版中省略的所有開發組件.

If you want to actually compile and build CUDA code, you need to install a separate CUDA toolkit which contains all the the development components which conda deliberately omits from their distribution.

這篇關于在使用 conda tensorflow-gpu 包之前是否還需要安裝 CUDA?的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網!

【網站聲明】本站部分內容來源于互聯網,旨在幫助大家更快的解決問題,如果有圖片或者內容侵犯了您的權益,請聯系我們刪除處理,感謝您的支持!

相關文檔推薦

Troubles while parsing with python very large xml file(使用 python 解析非常大的 xml 文件時出現問題)
Find all nodes by attribute in XML using Python 2(使用 Python 2 在 XML 中按屬性查找所有節點)
Python - How to parse xml response and store a elements value in a variable?(Python - 如何解析 xml 響應并將元素值存儲在變量中?)
How to get XML tag value in Python(如何在 Python 中獲取 XML 標記值)
How to correctly parse utf-8 xml with ElementTree?(如何使用 ElementTree 正確解析 utf-8 xml?)
Parse XML from URL into python object(將 XML 從 URL 解析為 python 對象)
主站蜘蛛池模板: 日韩精品一区二区三区在线观看 | 日韩精品一区二区三区视频播放 | 日韩精品在线看 | 日韩中文字幕免费 | 一区二区三区在线电影 | 久久精品久久精品久久精品 | 国产玖玖 | 成av人电影在线 | 久久精品在线免费视频 | 二区视频 | 日韩欧美国产一区二区三区 | 狠狠色狠狠色综合日日92 | 久草视频观看 | 一级黄色录像片子 | 欧美4p| 亚洲一区二区三区视频在线 | 视频1区2区| 国产精品高清在线 | 欧美一级二级在线观看 | 99久久久久久久久 | 黄色大片免费网站 | 国产福利视频导航 | 一区中文 | 国产真实精品久久二三区 | 国产精品久久久久久 | 亚洲一区二区三区视频在线 | 久久久精品久久久 | 国产精品99久久久久久www | 91精品在线播放 | 成人免费视频 | 国产日韩欧美精品一区二区 | 国产99久久精品一区二区永久免费 | 欧美精品一区二区在线观看 | 国产成人精品久久二区二区 | 亚洲福利视频一区二区 | 久久亚洲一区 | 欧美一区二区网站 | 国产精品欧美一区二区 | 国产乱码精品1区2区3区 | 日本精品一区二区在线观看 | 免费久|