久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

Tensorflow 似乎使用的是系統內存而不是 GPU,并且

Tensorflow seems to be using system memory not GPU, and the Program stops after global_variable_inititializer()(Tensorflow 似乎使用的是系統內存而不是 GPU,并且程序在 global_variable_initializer() 之后停止) - IT屋-程序
本文介紹了Tensorflow 似乎使用的是系統內存而不是 GPU,并且程序在 global_variable_initializer() 之后停止的處理方法,對大家解決問題具有一定的參考價值,需要的朋友們下面隨著小編來一起學習吧!

問題描述

我剛剛為我的桌面添加了一個新的 GTX 1070 Founders Addition,我正在嘗試在這個新的 GPU 上運行 tensorflow.我正在使用 tensorflow.device() 在我的 GPU 上運行 tensorflow,但似乎沒有發生這種情況.相反,它使用的是 cpu,而我的幾乎所有系統都使用 8GB 內存.這是我的代碼:

I just got a new GTX 1070 Founders Addition for my desktop, and I am trying to run tensorflow on this new GPU. I am using tensorflow.device() to run tensorflow on my GPU, but it seems like this is not happening. Instead it is using cpu, and almost all of my systems 8GB of ram. Here is my code:

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import os
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import matplotlib.image as mpimg
import math

print("

")
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
#
with tf.device("/gpu:0"):
    # Helper Function To Print Percentage
    def showPercent(num, den, roundAmount):
        print(  str( round((num / den) * roundAmount )/roundAmount ) + " % ", end="
")
    # Defince The Number Of Images To Get
    def getFile(dir, getEveryNthLine):
        allFiles = list(os.listdir(dir))
        fileNameList = []

        numOfFiles = len(allFiles)
        i = 0
        for fichier in allFiles:
            if(i % 100 == 0):
                showPercent(i, numOfFiles, 100)

            if(i % getEveryNthLine == 0):
                if(fichier.endswith(".png")):
                    fileNameList.append(dir + "/" + fichier[0:-4])
            i += 1
        return fileNameList

    # Other Helper Functions
    def init_weights(shape):
        init_random_dist = tf.truncated_normal(shape, stddev=0.1, dtype=tf.float16)
        return tf.Variable(init_random_dist)
    def init_bias(shape):
        init_bias_vals = tf.constant(0.1, shape=shape, dtype=tf.float16)
        return tf.Variable(init_bias_vals)
    def conv2d(x, W):
        # x --> [batch, H, W, Channels]
        # W --> [filter H, filter W, Channels IN, Channels Out]

        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding="SAME")
    def max_pool_2by2(x):
        # x --> [batch, H, W, Channels]
        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
    def convolutional_layer(input_x, shape):
        W = init_weights(shape)
        b = init_bias([ shape[3] ])
        return tf.nn.relu(conv2d(input_x, W) + b)
    def normal_full_layer(input_layer, size):
        input_size = int(input_layer.get_shape()[1])
        W = init_weights([input_size, size])
        b = init_bias([size])
        return tf.matmul(input_layer, W) + b

    print("Getting Images")
    fileNameList = getFile("F:cartoonset10k-small", 1000)
    print("
loaded " + str(len(fileNameList)) + " files")

    print("Defining Placeholders")
    x_ph = tf.placeholder(tf.float16, shape=[None, 400, 400, 4])
    y_ph = tf.placeholder(tf.float16, shape=[None])

    print("Defining Conv and Pool layer 1")
    convo_1 = convolutional_layer(x_ph, shape=[5, 5, 4, 32])
    convo_1_pooling = max_pool_2by2(convo_1)

    print("Defining Conv and Pool layer 2")
    convo_2 = convolutional_layer(convo_1_pooling, shape=[5, 5, 32, 64])
    convo_2_pooling = max_pool_2by2(convo_2)

    print("Define Flat later and a Full layer")
    convo_2_flat = tf.reshape(convo_2_pooling, [-1, 400 * 400 * 64])
    full_layer_one = tf.nn.relu(normal_full_layer(convo_2_flat, 1024))
    y_pred = full_layer_one # Add Dropout Later

    def getLabels(filePath):
        df = []
        with open(filePath, "r") as file:
            for line in list(file):
                tempList = line.replace("
", "").replace('"', "").replace(" ", "").split(",")
                df.append({
                    "attr": tempList[0],
                    "value":int(tempList[1]),
                    "maxValue":int(tempList[2])
                })
        return df

    print("
Splitting And Formating X, and Y Data")
    x_data = []
    y_data = []
    numOfFiles = len(fileNameList)
    i = 0
    for file in fileNameList:
        if i % 10 == 0:
            showPercent(i, numOfFiles, 100)
        x_data.append(mpimg.imread(file + ".png"))
        y_data.append(pd.DataFrame(getLabels(file + ".csv"))["value"][0])
        i += 1

    print("
Conveting x_data to list")
    i = 0
    for indx in range(len(x_data)):
        if i % 10 == 0:
            showPercent(i, numOfFiles, 100)
        x_data[indx] = x_data[indx].tolist()
        i += 1

    print("

Performing Train Test Split")
    train_x, test_x, train_y, test_y = train_test_split(x_data, y_data, test_size=0.2)

    print("Defining Loss And Optimizer")
    cross_entropy = tf.reduce_mean(
        tf.nn.softmax_cross_entropy_with_logits_v2(
            labels=y_ph,
            logits=y_pred
        )
    )
    optimizer = tf.train.AdadeltaOptimizer(learning_rate=0.001)
    train = optimizer.minimize(cross_entropy)

    print("Define Var Init")
    init = tf.global_variables_initializer()
    with tf.Session() as sess:
        print("Checkpoint Before Initializer")
        sess.run(init)
        print("Checkpoint After Initializer")
        batch_size = 8
        steps = 1
        i = 0
        for i in range(steps):
            if i % 10:
                print(i / 100, end="
")

            batch_x = []
            i = 0
            for i in np.random.randint(len(train_x), size=batch_size):
                showPercent(i, len(train_x), 100)
                train_x[i]
            batch_x = [train_x[i] for i in np.random.randint(len(train_x), size=batch_size) ]
            batch_y = [train_y[i] for i in np.random.randint(len(train_y), size=batch_size) ]
            print(sess.run(train, {
                x_ph:train_x,
                y_ph:train_y,
            }))

如果你運行它,當我運行 global_variable_initializer() 時,這個程序似乎退出了.它還在終端中打印:20971520000 的分配超過了系統內存的 10%. 在查看我的任務管理器時,我看到了這個:

If you run this, this program seems to quit when I run global_variable_initializer(). It also prints in the terminal: Allocation of 20971520000 exceeds 10% of system memory. When looking at my task manager, I see this:

該程序占用了我的大量 CPU.

程序占用了我的大量內存.

程序沒有使用我的 GPU.

我不知道為什么會發生這種情況.我正在使用 anaconda 環境,并安裝了 tensorflow-gpu.我非常感謝任何人的建議和幫助.

I am not shore why this is happening. I am using an anaconda environment, and have installed tensorflow-gpu. I would really appreciate anyones suggestions and help.

另外,當我運行它時,程序在 global_variable_initializer() 之后停止.我不確定這是否與上述問題有關.

In addition, when I run this, the program stops after global_variable_initializer(). I am not sure if this is related to the problem above.

Tensorflow 是 1.12 版.CUDA 是 10.0.130 版本.

Tensorflow is version 1.12. CUDA is version 10.0.130.

我們將不勝感激.

推薦答案

嘗試用這個簡單的例子比較時間(GPU vs CPU):

Try compare time (GPU vs CPU) with this simple example:

import tensorflow as tf
mnist = tf.keras.datasets.mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

def create_model():
    model = tf.keras.models.Sequential([
      tf.keras.layers.Flatten(input_shape=(28, 28)),
      tf.keras.layers.Dense(512, activation=tf.nn.relu),
      tf.keras.layers.Dropout(0.2),
      tf.keras.layers.Dense(10, activation=tf.nn.softmax)
    ])
    model.compile(optimizer='adam',
                  loss='sparse_categorical_crossentropy',
                  metrics=['accuracy'])
    return model    

epoch = 3

print('GPU:')
with tf.device('/gpu:0'):   
    model = create_model()

    model.fit(x_train, y_train, epochs=epoch)

print('
CPU:')
with tf.device('/cpu:0'):   
    model = create_model()

    model.fit(x_train, y_train, epochs=epoch)

這篇關于Tensorflow 似乎使用的是系統內存而不是 GPU,并且程序在 global_variable_initializer() 之后停止的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網!

【網站聲明】本站部分內容來源于互聯網,旨在幫助大家更快的解決問題,如果有圖片或者內容侵犯了您的權益,請聯系我們刪除處理,感謝您的支持!

相關文檔推薦

How to install Selenium in a conda environment?(如何在 conda 環境中安裝 Selenium?)
get the CUDA and CUDNN version on windows with Anaconda installe(使用 Anaconda installe 在 Windows 上獲取 CUDA 和 CUDNN 版本)
How can I download Anaconda for python 3.6(如何下載適用于 python 3.6 的 Anaconda)
Using two different Python Distributions(使用兩個不同的 Python 發行版)
How can I install Anaconda aside an existing pyenv installation on OSX?(除了 OSX 上現有的 pyenv 安裝之外,如何安裝 Anaconda?)
Permanently set Python path for Anaconda within Cygwin(在 Cygwin 中為 Anaconda 永久設置 Python 路徑)
主站蜘蛛池模板: 亚洲国产精 | 五月天黄色网 | 日韩精品视频免费在线观看 | 四虎在线免费视频 | 天天综合av | 午夜成人在线视频 | 黄色小视频在线免费观看 | 国产精品福利一区 | 欧美性猛交一区二区三区精品 | 欧美老少妇 | 在线免费播放av | 亚洲午夜久久 | 免费视频a | 国产成年妇视频 | 五月天婷婷基地 | 99色综合| 免费在线观看av | av福利在线观看 | 国产一区二区三区免费视频 | www.日本高清 | 亚洲小视频 | 东北少妇bbbb搡bbb搡 | 欧美精品二区三区四区免费看视频 | 国产伦精品 | 伊人网在线 | 狠狠操av| 久久视频免费看 | 欧美日皮视频 | 黄色一级大片在线免费看国产一 | 特级黄色片 | 麻豆一区二区三区四区 | 国产涩涩| 国产精品久久久久久久免费看 | 亚洲免费观看 | 亚洲性天堂 | 一二三区视频 | 国产精品久久午夜夜伦鲁鲁 | 久久精品一区二区国产 | 国产天天操| 久热在线视频 | 黄色录像免费观看 |