久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

<tfoot id='nZs0C'></tfoot>
<legend id='nZs0C'><style id='nZs0C'><dir id='nZs0C'><q id='nZs0C'></q></dir></style></legend>

  1. <i id='nZs0C'><tr id='nZs0C'><dt id='nZs0C'><q id='nZs0C'><span id='nZs0C'><b id='nZs0C'><form id='nZs0C'><ins id='nZs0C'></ins><ul id='nZs0C'></ul><sub id='nZs0C'></sub></form><legend id='nZs0C'></legend><bdo id='nZs0C'><pre id='nZs0C'><center id='nZs0C'></center></pre></bdo></b><th id='nZs0C'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='nZs0C'><tfoot id='nZs0C'></tfoot><dl id='nZs0C'><fieldset id='nZs0C'></fieldset></dl></div>

      • <bdo id='nZs0C'></bdo><ul id='nZs0C'></ul>

      <small id='nZs0C'></small><noframes id='nZs0C'>

      兩天之間的差異(不包括周末)(以小時為單位)

      Differance between two days excluding weekends in hours(兩天之間的差異(不包括周末)(以小時為單位))
      <tfoot id='ROrjd'></tfoot>
        <tbody id='ROrjd'></tbody>
        <bdo id='ROrjd'></bdo><ul id='ROrjd'></ul>

              <small id='ROrjd'></small><noframes id='ROrjd'>

              <i id='ROrjd'><tr id='ROrjd'><dt id='ROrjd'><q id='ROrjd'><span id='ROrjd'><b id='ROrjd'><form id='ROrjd'><ins id='ROrjd'></ins><ul id='ROrjd'></ul><sub id='ROrjd'></sub></form><legend id='ROrjd'></legend><bdo id='ROrjd'><pre id='ROrjd'><center id='ROrjd'></center></pre></bdo></b><th id='ROrjd'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='ROrjd'><tfoot id='ROrjd'></tfoot><dl id='ROrjd'><fieldset id='ROrjd'></fieldset></dl></div>
              <legend id='ROrjd'><style id='ROrjd'><dir id='ROrjd'><q id='ROrjd'></q></dir></style></legend>

                本文介紹了兩天之間的差異(不包括周末)(以小時為單位)的處理方法,對大家解決問題具有一定的參考價值,需要的朋友們下面隨著小編來一起學習吧!

                問題描述

                我有一個代碼使用 np.busdaycount 計算不包括周末的日期差異,但我需要它在我無法獲得的時間.

                I have a code that calculates the date differance excluding the weekends using np.busdaycount, but i need it in the hours which i cannot able to get.

                import datetime
                import numpy as np
                
                
                df.Inflow_date_time= [pandas.Timestamp('2019-07-22 21:11:26')]
                df.End_date_time= [pandas.Timestamp('2019-08-02 11:44:47')]
                
                df['Day'] = ([np.busday_count(b,a) for a, b in zip(df['End_date_time'].values.astype('datetime64[D]'),df['Inflow_date_time'].values.astype('datetime64[D]'))])
                
                  Day
                0  9
                

                我需要輸出時間,不包括周末.喜歡

                I need the out put as hours excluding the weekend. Like

                  Hours
                0  254
                

                問題

                inflow_date_time=2019-08-01 23:22:46End_date_time = 2019-08-05 17:43:51預計小時數 42 小時(1+24+17)

                Inflow_date_time=2019-08-01 23:22:46 End_date_time = 2019-08-05 17:43:51 Hours expected 42 hours (1+24+17)

                inflow_date_time=2019-08-03 23:22:46End_date_time = 2019-08-05 17:43:51
                預計小時數 17 小時(0+0+17)

                Inflow_date_time=2019-08-03 23:22:46 End_date_time = 2019-08-05 17:43:51
                Hours expected 17 hours (0+0+17)

                inflow_date_time=2019-08-01 23:22:46End_date_time = 2019-08-05 17:43:51預計小時數 17 小時(0+0+17)

                Inflow_date_time=2019-08-01 23:22:46 End_date_time = 2019-08-05 17:43:51 Hours expected 17 hours (0+0+17)

                流入日期時間=2019-07-26 23:22:46End_date_time = 2019-08-05 17:43:51
                預計小時數 138 小時(1+120+17)

                Inflow_date_time=2019-07-26 23:22:46 End_date_time = 2019-08-05 17:43:51
                Hours expected 138 hours (1+120+17)

                inflow_date_time=2019-08-05 11:22:46End_date_time = 2019-08-05 17:43:51
                預計小時數 6 小時(0+0+6)

                Inflow_date_time=2019-08-05 11:22:46 End_date_time = 2019-08-05 17:43:51
                Hours expected 6 hours (0+0+6)

                請提出建議.

                推薦答案

                想法是按天刪除times的下限日期時間,并獲取開始日+一天之間的工作日數到numpy.busday_count >hours3 列 然后為開始和結束時間創建 hour1hour2 列,如果不是周末時間,則按小時計算.最后將所有小時列加在一起:

                Idea is floor datetimes for remove times by floor by days and get number of business days between start day + one day to hours3 column by numpy.busday_count and then create hour1 and hour2 columns for start and end hours with floor by hours if not weekends hours. Last sum all hours columns together:

                df = pd.DataFrame(columns=['Inflow_date_time','End_date_time', 'need'])
                df.Inflow_date_time= [pd.Timestamp('2019-08-01 23:22:46'),
                                      pd.Timestamp('2019-08-03 23:22:46'),
                                      pd.Timestamp('2019-08-01 23:22:46'),
                                      pd.Timestamp('2019-07-26 23:22:46'),
                                      pd.Timestamp('2019-08-05 11:22:46')]
                df.End_date_time= [pd.Timestamp('2019-08-05 17:43:51')] * 5
                df.need = [42,17,41,138,6]
                
                #print (df)
                

                <小時>

                df["hours1"] = df["Inflow_date_time"].dt.ceil('d')
                df["hours2"] =  df["End_date_time"].dt.floor('d')
                one_day_mask = df["Inflow_date_time"].dt.floor('d') == df["hours2"]
                
                df['hours3'] = [np.busday_count(b,a)*24 for a, b in zip(df['hours2'].dt.strftime('%Y-%m-%d'),
                                                                        df['hours1'].dt.strftime('%Y-%m-%d'))]
                
                mask1 = df['hours1'].dt.dayofweek < 5
                hours1 = df['hours1']  - df['Inflow_date_time'].dt.floor('H')
                
                df['hours1'] = np.where(mask1, hours1, np.nan) / np.timedelta64(1 ,'h')
                
                mask2 = df['hours2'].dt.dayofweek < 5
                
                df['hours2'] = (np.where(mask2, df['End_date_time'].dt.floor('H')-df['hours2'], np.nan) / 
                                np.timedelta64(1 ,'h'))
                
                df['date_diff'] = df['hours1'].fillna(0) + df['hours2'].fillna(0) + df['hours3']
                
                one_day = (df['End_date_time'].dt.floor('H') - df['Inflow_date_time'].dt.floor('H')) / 
                            np.timedelta64(1 ,'h')
                df["date_diff"] = df["date_diff"].mask(one_day_mask, one_day)
                

                <小時>

                print (df)
                     Inflow_date_time       End_date_time  need  hours1  hours2  hours3  
                0 2019-08-01 23:22:46 2019-08-05 17:43:51    42     1.0    17.0      24   
                1 2019-08-03 23:22:46 2019-08-05 17:43:51    17     NaN    17.0       0   
                2 2019-08-01 23:22:46 2019-08-05 17:43:51    41     1.0    17.0      24   
                3 2019-07-26 23:22:46 2019-08-05 17:43:51   138     NaN    17.0     120   
                4 2019-08-05 11:22:46 2019-08-05 17:43:51     6    13.0    17.0     -24   
                
                   date_diff  
                0       42.0  
                1       17.0  
                2       42.0  
                3      137.0  
                4        6.0  
                

                這篇關于兩天之間的差異(不包括周末)(以小時為單位)的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網!

                【網站聲明】本站部分內容來源于互聯網,旨在幫助大家更快的解決問題,如果有圖片或者內容侵犯了您的權益,請聯系我們刪除處理,感謝您的支持!

                相關文檔推薦

                python: Two modules and classes with the same name under different packages(python:不同包下同名的兩個模塊和類)
                Configuring Python to use additional locations for site-packages(配置 Python 以使用站點包的其他位置)
                How to structure python packages without repeating top level name for import(如何在不重復導入頂級名稱的情況下構造python包)
                Install python packages on OpenShift(在 OpenShift 上安裝 python 包)
                How to refresh sys.path?(如何刷新 sys.path?)
                Distribute a Python package with a compiled dynamic shared library(分發帶有已編譯動態共享庫的 Python 包)

                  • <bdo id='KLkkH'></bdo><ul id='KLkkH'></ul>
                  • <small id='KLkkH'></small><noframes id='KLkkH'>

                        <i id='KLkkH'><tr id='KLkkH'><dt id='KLkkH'><q id='KLkkH'><span id='KLkkH'><b id='KLkkH'><form id='KLkkH'><ins id='KLkkH'></ins><ul id='KLkkH'></ul><sub id='KLkkH'></sub></form><legend id='KLkkH'></legend><bdo id='KLkkH'><pre id='KLkkH'><center id='KLkkH'></center></pre></bdo></b><th id='KLkkH'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='KLkkH'><tfoot id='KLkkH'></tfoot><dl id='KLkkH'><fieldset id='KLkkH'></fieldset></dl></div>
                      1. <legend id='KLkkH'><style id='KLkkH'><dir id='KLkkH'><q id='KLkkH'></q></dir></style></legend>
                            <tbody id='KLkkH'></tbody>

                          <tfoot id='KLkkH'></tfoot>
                        • 主站蜘蛛池模板: 国产精品国产精品国产专区不卡 | 欧美一区二区精品 | 一区二区三区四区国产 | 成人手机在线观看 | 国产精品久久久久久亚洲影视 | 人人草人人 | 午夜av免费 | 国产日韩av在线 | 国产午夜一区二区 | 日韩亚洲一区二区 | 免费日韩视频 | 国产精品一区二区三区不卡 | 日韩色av | 成人玩具h视频 | av久久久 | 在线中文字幕 | 亚洲一区在线观看视频 | 欧美精品在线视频 | 日韩国产一区二区 | heyzo在线观看 | 中文字字幕码一二三区 | 国产免费一区 | 日本视频在线免费观看 | 91看黄 | 天天插夜夜操 | 日日舔 | 69视频在线播放 | 亚洲一区二区在线视频 | 欧美三级大片 | 日韩理论视频 | 97精品国产 | 三级视频在线 | 青草导航 | 九色在线视频 | av大片在线观看 | 成人性生活片 | 欧美性生交xxxxx久久久 | 看毛片网站 | 少妇网址| 欧美一级黄 | 91网站免费 |