久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

<i id='ToigK'><tr id='ToigK'><dt id='ToigK'><q id='ToigK'><span id='ToigK'><b id='ToigK'><form id='ToigK'><ins id='ToigK'></ins><ul id='ToigK'></ul><sub id='ToigK'></sub></form><legend id='ToigK'></legend><bdo id='ToigK'><pre id='ToigK'><center id='ToigK'></center></pre></bdo></b><th id='ToigK'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='ToigK'><tfoot id='ToigK'></tfoot><dl id='ToigK'><fieldset id='ToigK'></fieldset></dl></div>

    <tfoot id='ToigK'></tfoot><legend id='ToigK'><style id='ToigK'><dir id='ToigK'><q id='ToigK'></q></dir></style></legend>

      • <bdo id='ToigK'></bdo><ul id='ToigK'></ul>

        <small id='ToigK'></small><noframes id='ToigK'>

        為什么在 Win32 控制臺應用程序啟動時會出現三個

        Why there are three unexpected worker threads when a Win32 console application starts up?(為什么在 Win32 控制臺應用程序啟動時會出現三個意外的工作線程?)

        <small id='8pJY1'></small><noframes id='8pJY1'>

              <tbody id='8pJY1'></tbody>

              1. <i id='8pJY1'><tr id='8pJY1'><dt id='8pJY1'><q id='8pJY1'><span id='8pJY1'><b id='8pJY1'><form id='8pJY1'><ins id='8pJY1'></ins><ul id='8pJY1'></ul><sub id='8pJY1'></sub></form><legend id='8pJY1'></legend><bdo id='8pJY1'><pre id='8pJY1'><center id='8pJY1'></center></pre></bdo></b><th id='8pJY1'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='8pJY1'><tfoot id='8pJY1'></tfoot><dl id='8pJY1'><fieldset id='8pJY1'></fieldset></dl></div>
              2. <legend id='8pJY1'><style id='8pJY1'><dir id='8pJY1'><q id='8pJY1'></q></dir></style></legend>
                  <bdo id='8pJY1'></bdo><ul id='8pJY1'></ul>
                  <tfoot id='8pJY1'></tfoot>
                • 本文介紹了為什么在 Win32 控制臺應用程序啟動時會出現三個意外的工作線程?的處理方法,對大家解決問題具有一定的參考價值,需要的朋友們下面隨著小編來一起學習吧!

                  問題描述

                  這是情況的截圖!

                  我使用 VS2010 創建了一個 Visual C++ Win32 控制臺應用程序.當我啟動應用程序時,我發現有四個線程:一個主線程"和三個工作線程(我沒有寫任何代碼).

                  I created a Visual C++ Win32 Console Application with VS2010. When I started the application, I found that there were four threads: one 'Main Thread' and three worker threads (I didn't write any code).

                  我不知道這三個工作線程從何而來.
                  我想知道這三個線程的作用.

                  I don't know where these three worker threads came from.
                  I would like to know the role of these three threads.

                  提前致謝!

                  推薦答案

                  Windows 10 實現了一種新的 DLL 加載方式 - 多個工作線程并行執行 (LdrpWorkCallback).所有 Windows 10 進程現在都有幾個這樣的線程.

                  Windows 10 implemented a new way of loading DLLs - several worker threads do it in parallel (LdrpWorkCallback). All Windows 10 processes now have several such threads.

                  在 Win10 之前,系統 (ntdll.dll) 總是在單個線程中加載 DLL,但從 Win10 開始,這種行為發生了變化.現在是并行加載器"存在于 ntdll 中.現在加載任務(NTSTATUS LdrpSnapModule(LDRP_LOAD_CONTEXT* LoadContext))可以在工作線程中執行.幾乎每個 DLL 都有導入(依賴 DLL),所以當一個 DLL 被加載時 - 它的依賴 DLL 也被加載并且這個過程是遞歸的(依賴 DLL 有自己的依賴).

                  Before Win10, the system (ntdll.dll) always loaded DLLs in a single thread, but starting with Win10 this behaviour changed. Now a "Parallel loader" exists in ntdll. Now the loading task (NTSTATUS LdrpSnapModule(LDRP_LOAD_CONTEXT* LoadContext)) can be executed in worker threads. Almost every DLL has imports (dependent DLLs), so when a DLL is loaded - its dependent DLLs are also loaded and this process is recursive (dependent DLLs have own dependencies).

                  函數 void LdrpMapAndSnapDependency(LDRP_LOAD_CONTEXT* LoadContext) 遍歷當前加載的 DLL 導入表,并通過調用 LdrpLoadDependentModule()(其中為新加載的 DLL 在內部調用 LdrpMapAndSnapDependency() - 所以這個過程是遞歸的).最后,LdrpMapAndSnapDependency() 需要調用 NTSTATUS LdrpSnapModule(LDRP_LOAD_CONTEXT* LoadContext) 將導入綁定到已加載的 DLL.LdrpSnapModule() 在頂級 DLL 加載過程中為許多 DLL 執行,并且該過程對于每個 DLL 都是獨立的 - 因此這是并行化的好地方.LdrpSnapModule() 在大多數情況下不會加載新的 DLL,而只會將導入綁定到已加載的導出.但是,如果導入被解析為轉發導出(這種情況很少發生) - 會加載新的轉發 DLL.

                  The function void LdrpMapAndSnapDependency(LDRP_LOAD_CONTEXT* LoadContext) walks the current loaded DLL import table and loads its direct (1st level) dependent DLLs by calling LdrpLoadDependentModule() (which internally calls LdrpMapAndSnapDependency() for the newly loaded DLL - so this process is recursive). Finally, LdrpMapAndSnapDependency() needs to call NTSTATUS LdrpSnapModule(LDRP_LOAD_CONTEXT* LoadContext) to bind imports to the already loaded DLLs. LdrpSnapModule() is executed for many DLLs in the top level DLL load process, and this process is independent for every DLL - so this is a good place to parallelize. LdrpSnapModule() in most cases does not load new DLLs, but only binds import to export from already loaded ones. But if an import is resolved to a forwarded export (which rarely happens) - the new, forwarded DLL, is loaded.

                  一些當前的實施細節:

                  1. 首先,讓我們看看 struct _RTL_USER_PROCESS_PARAMETERS 新字段 - ULONG LoaderThreads.這個 LoaderThreads(如果設置為非零)啟用或禁用并行加載器"在新的過程中.當我們通過 ZwCreateUserProcess() 創建新進程時- 第 9 個參數是PRTL_USER_PROCESS_PARAMETERS 過程參數.但是如果我們使用 CreateProcess[Internal]W() - 我們不能直接傳遞 PRTL_USER_PROCESS_PARAMETERS - 只有 STARTUPINFO.RTL_USER_PROCESS_PARAMETERS 是從STARTUPINFO 部分初始化的,但是我們不控制ULONG LoaderThreads,它永遠為零(如果我們不調用ZwCreateUserProcess() 或為此例程設置一個鉤子).

                  1. first of all, let us look into the struct _RTL_USER_PROCESS_PARAMETERS new field - ULONG LoaderThreads. this LoaderThreads (if set to nonzero) enables or disables "Parallel loader" in the new process. When we create a new process by ZwCreateUserProcess() - the 9th argument is PRTL_USER_PROCESS_PARAMETERS ProcessParameters. but if we use CreateProcess[Internal]W() - we cannot pass PRTL_USER_PROCESS_PARAMETERS directly - only STARTUPINFO. RTL_USER_PROCESS_PARAMETERS is partially initialized from STARTUPINFO, but we do not control ULONG LoaderThreads, and it will always be zero (if we do not call ZwCreateUserProcess() or set a hook to this routine).

                  在新的進程初始化階段,調用LdrpInitializeExecutionOptions()(來自LdrpInitializeProcess()).此例程檢查 HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindows NTCurrentVersionImage File Execution Options 的幾個值(如果 子鍵存在 - 通常不存在),包括 MaxLoaderThreads (REG_DWORD) - 如果 MaxLoaderThreads 存在 - 它的值覆蓋RTL_USER_PROCESS_PARAMETERS.LoaderThreads.

                  In the new process initialization phase, LdrpInitializeExecutionOptions() is called (from LdrpInitializeProcess()). This routine checks HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindows NTCurrentVersionImage File Execution Options<app name> for several values (if the <app name> subkey exists - usually it doesn't), including MaxLoaderThreads (REG_DWORD) - if MaxLoaderThreads exists - its value overrides RTL_USER_PROCESS_PARAMETERS.LoaderThreads.

                  LdrpCreateLoaderEvents() 被調用.此例程必須創建 2 個全局事件:HANDLE LdrpWorkCompleteEvent, LdrpLoadCompleteEvent;,用于同步.

                  LdrpCreateLoaderEvents() is called. This routine must create 2 global events: HANDLE LdrpWorkCompleteEvent, LdrpLoadCompleteEvent;, which are used for synchronization.

                  NTSTATUS LdrpCreateLoaderEvents()
                  {
                      NTSTATUS status = ZwCreateEvent(&LdrpWorkCompleteEvent, EVENT_ALL_ACCESS, 0, SynchronizationEvent, TRUE);
                  
                      if (0 <= status)
                      {
                          status = ZwCreateEvent(&LdrpLoadCompleteEvent, EVENT_ALL_ACCESS, 0, SynchronizationEvent, TRUE);
                      }
                      return status;
                  }
                  

                • LdrpInitializeProcess() 調用 void LdrpDetectDetour().這個名字不言自明.它不返回值而是初始化全局變量BOOLEAN LdrpDetourExist.這個例程首先檢查一些加載器關鍵例程是否被鉤住 - 目前有 5 個例程:

                • LdrpInitializeProcess() calls void LdrpDetectDetour(). This name speaks for itself. it does not return a value but initializes the global variable BOOLEAN LdrpDetourExist. This routine first checks whether some loader critical routines are hooked - currently these are 5 routines:

                  • NtOpenFile
                  • NtCreateSection
                  • NtQueryAttributesFile
                  • NtOpenSection
                  • NtMapViewOfSection

                  如果是 - LdrpDetourExist = TRUE;

                  如果沒有鉤住 - ThreadDynamicCodePolicyInfo 被查詢 - 完整代碼:

                  If not hooked - ThreadDynamicCodePolicyInfo is queried - full code:

                  void LdrpDetectDetour()
                  {
                      if (LdrpDetourExist) return ;
                  
                      static PVOID LdrpCriticalLoaderFunctions[] = {
                          NtOpenFile,
                          NtCreateSection,
                          ZwQueryAttributesFile,
                          ZwOpenSection,
                          ZwMapViewOfSection,
                      };
                  
                      static M128A LdrpThunkSignature[5] = {
                          //***
                      };
                  
                      ULONG n = RTL_NUMBER_OF(LdrpCriticalLoaderFunctions);
                      M128A* ppv = (M128A*)LdrpCriticalLoaderFunctions;
                      M128A* pps = LdrpThunkSignature; 
                      do
                      {
                          if (ppv->Low != pps->Low || ppv->High != pps->High)
                          {
                              if (LdrpDebugFlags & 5)
                              {
                                  DbgPrint("!!! Detour detected, disable parallel loading
                  ");
                                  LdrpDetourExist = TRUE;
                                  return;
                              }
                          }
                  
                      } while (pps++, ppv++, --n);
                  
                      BOOL DynamicCodePolicy;
                  
                      if (0 <= ZwQueryInformationThread(NtCurrentThread(), ThreadDynamicCodePolicyInfo, &DynamicCodePolicy, sizeof(DynamicCodePolicy), 0))
                      {
                          if (LdrpDetourExist = (DynamicCodePolicy == 1))
                          {
                              if (LdrpMapAndSnapWork)
                              {
                                  WaitForThreadpoolWorkCallbacks(LdrpMapAndSnapWork, TRUE);//TpWaitForWork
                                  TpReleaseWork(LdrpMapAndSnapWork);//CloseThreadpoolWork
                                  LdrpMapAndSnapWork = 0;
                                  TpReleasePool(LdrpThreadPool);//CloseThreadpool
                                  LdrpThreadPool = 0;
                              }
                          }
                      }
                  }
                  

                • LdrpInitializeProcess() 調用 NTSTATUS LdrpEnableParallelLoading (ULONG LoaderThreads) - 作為 LdrpEnableParallelLoading(ProcessParameters->LoaderThreads):>

                • LdrpInitializeProcess() calls NTSTATUS LdrpEnableParallelLoading (ULONG LoaderThreads) - as LdrpEnableParallelLoading(ProcessParameters->LoaderThreads):

                  NTSTATUS LdrpEnableParallelLoading (ULONG LoaderThreads)
                  {
                      LdrpDetectDetour();
                  
                      if (LoaderThreads)
                      {
                          LoaderThreads = min(LoaderThreads, 16);// not more than 16 threads allowed
                          if (LoaderThreads <= 1) return STATUS_SUCCESS;
                      }
                      else
                      {
                          if (RtlGetSuiteMask() & 0x10000) return STATUS_SUCCESS; 
                          LoaderThreads = 4;// default for 4 threads
                      }
                  
                      if (LdrpDetourExist) return STATUS_SUCCESS;
                  
                      NTSTATUS status = TpAllocPool(&LdrpThreadPool, 1);//CreateThreadpool
                  
                      if (0 <= status)
                      {
                          TpSetPoolWorkerThreadIdleTimeout(LdrpThreadPool, -300000000);// 30 second idle timeout
                          TpSetPoolMaxThreads(LdrpThreadPool, LoaderThreads - 1);//SetThreadpoolThreadMaximum 
                          TP_CALLBACK_ENVIRON CallbackEnviron = { };
                          CallbackEnviron->CallbackPriority = TP_CALLBACK_PRIORITY_NORMAL;
                          CallbackEnviron->Size = sizeof(TP_CALLBACK_ENVIRON);
                          CallbackEnviron->Pool = LdrpThreadPool;
                          CallbackEnviron->Version = 3;
                  
                          status = TpAllocWork(&LdrpMapAndSnapWork, LdrpWorkCallback, 0, &CallbackEnviron);//CreateThreadpoolWork
                      }
                  
                      return status;
                  }
                  

                  創建了一個特殊的加載器線程池 - LdrpThreadPool,具有 LoaderThreads - 1 個最大線程.空閑超時設置為30秒(之后線程退出)并分配PTP_WORK LdrpMapAndSnapWork,然后在void LdrpQueueWork(LDRP_LOAD_CONTEXT* LoadContext)中使用.

                  A special loader thread pool is created - LdrpThreadPool, with LoaderThreads - 1 max threads. Idle timeout is set to 30 seconds (after which the thread exits) and allocated PTP_WORK LdrpMapAndSnapWork, which is then used in void LdrpQueueWork(LDRP_LOAD_CONTEXT* LoadContext).

                  并行加載器使用的全局變量:

                  Global variables used by the parallel loader:

                  HANDLE LdrpWorkCompleteEvent, LdrpLoadCompleteEvent;
                  CRITICAL_SECTION LdrpWorkQueueLock;
                  LIST_ENTRY LdrpWorkQueue = { &LdrpWorkQueue, &LdrpWorkQueue };
                  
                  
                  ULONG LdrpWorkInProgress;
                  BOOLEAN LdrpDetourExist;
                  PTP_POOL LdrpThreadPool;
                  
                  PTP_WORK LdrpMapAndSnapWork;
                  
                  enum DRAIN_TASK {
                      WaitLoadComplete, WaitWorkComplete
                  };
                  
                  struct LDRP_LOAD_CONTEXT
                  {
                      UNICODE_STRING BaseDllName;
                      PVOID somestruct;
                      ULONG Flags;//some unknown flags
                      NTSTATUS* pstatus; //final status of load
                      _LDR_DATA_TABLE_ENTRY* ParentEntry; // of 'parent' loading dll
                      _LDR_DATA_TABLE_ENTRY* Entry; // this == Entry->LoadContext
                      LIST_ENTRY WorkQueueListEntry;
                      _LDR_DATA_TABLE_ENTRY* ReplacedEntry;
                      _LDR_DATA_TABLE_ENTRY** pvImports;// in same ordef as in IMAGE_IMPORT_DESCRIPTOR piid
                      ULONG ImportDllCount;// count of pvImports
                      LONG TaskCount;
                      PVOID pvIAT;
                      ULONG SizeOfIAT;
                      ULONG CurrentDll; // 0 <= CurrentDll < ImportDllCount
                      PIMAGE_IMPORT_DESCRIPTOR piid;
                      ULONG OriginalIATProtect;
                      PVOID GuardCFCheckFunctionPointer;
                      PVOID* pGuardCFCheckFunctionPointer;
                  };
                  

                  不幸的是 LDRP_LOAD_CONTEXT 未包含在已發布的 .pdb 文件中,因此我的定義僅包含部分名稱.

                  Unfortunately LDRP_LOAD_CONTEXT is not contained in published .pdb files, so my definitions include only partial names.

                  struct {
                      ULONG MaxWorkInProgress;//4 - values from explorer.exe at some moment
                      ULONG InLoaderWorker;//7a (this mean LdrpSnapModule called from worker thread)
                      ULONG InLoadOwner;//87 (LdrpSnapModule called direct, in same thread as `LdrpMapAndSnapDependency`)
                  } LdrpStatistics;
                  
                  // for statistics
                  void LdrpUpdateStatistics()
                  {
                    LdrpStatistics.MaxWorkInProgress = max(LdrpStatistics.MaxWorkInProgress, LdrpWorkInProgress);
                    NtCurrentTeb()->LoaderWorker ? LdrpStatistics.InLoaderWorker++ : LdrpStatistics.InLoadOwner++
                  }
                  

                  TEB.CrossTebFlags - 現在存在 2 個新標志:

                  In TEB.CrossTebFlags - now exist 2 new flags:

                  USHORT LoadOwner : 01; // 0x1000;
                  USHORT LoaderWorker : 01; // 0x2000;
                  

                  最后 2 位是空閑的 (USHORT SpareSameTebBits : 02;//0xc000)

                  Last 2 bits is spare (USHORT SpareSameTebBits : 02; // 0xc000)

                  LdrpMapAndSnapDependency(LDRP_LOAD_CONTEXT* LoadContext) 包括以下代碼:

                  LDR_DATA_TABLE_ENTRY* Entry = LoadContext->CurEntry;
                  if (LoadContext->pvIAT)
                  {
                      Entry->DdagNode->State = LdrModulesSnapping;
                      if (LoadContext->PrevEntry)// if recursive call
                      {
                          LdrpQueueWork(LoadContext); // !!!
                      }
                      else
                      {
                          status = LdrpSnapModule(LoadContext);
                      }
                  }
                  else
                  {
                      Entry->DdagNode->State = LdrModulesSnapped;
                  }
                  

                  所以,如果 LoadContext->PrevEntry(假設我們加載 user32.dll.在第一次調用 LdrpMapAndSnapDependency() 時,LoadContext->PrevEntry 將始終為 0(當 CurEntry 指向 user32.dll 時),但是當我們遞歸調用 LdrpMapAndSnapDependency() 依賴 gdi32.dll - PrevEntry 將用于 user32.dllCurEntry 用于 gdi32.dll),我們不直接調用LdrpSnapModule(LoadContext);而是LdrpQueueWork(LoadContext);.

                  So, if LoadContext->PrevEntry (say we load user32.dll. In the first call to LdrpMapAndSnapDependency(), LoadContext->PrevEntry will be always 0 (when CurEntry points to user32.dll), but when we recursively call LdrpMapAndSnapDependency() for it dependency gdi32.dll - PrevEntry will be for user32.dll and CurEntry for gdi32.dll), we do not direct call LdrpSnapModule(LoadContext); but LdrpQueueWork(LoadContext);.

                  LdrpQueueWork() 很簡單:

                  void LdrpQueueWork(LDRP_LOAD_CONTEXT* LoadContext)
                  {
                      if (0 <= ctx->pstatus)
                      {
                          EnterCriticalSection(&LdrpWorkQueueLock);
                  
                          InsertHeadList(&LdrpWorkQueue, &LoadContext->WorkQueueListEntry);
                  
                          LeaveCriticalSection(&LdrpWorkQueueLock);
                  
                          if (LdrpMapAndSnapWork && !RtlGetCurrentPeb()->Ldr->ShutdownInProgress)
                          {
                              SubmitThreadpoolWork(LdrpMapAndSnapWork);//TpPostWork
                          }
                      }
                  }
                  

                  我們將 LoadContext 插入到 LdrpWorkQueue 中,如果Parallel loader"已啟動 (LdrpMapAndSnapWork != 0) 而不是 ShutdownInProgress - 我們將工作提交到加載器池.但是即使池沒有初始化(比如因為 Detours 存在) - 也不會出現錯誤 - 我們在 LdrpDrainWorkQueue() 中處理這個任務.

                  We insert LoadContext to LdrpWorkQueue and if "Parallel loader" is started (LdrpMapAndSnapWork != 0) and not ShutdownInProgress - we submit work to loader pool. But even if the pool is not initialized (say because Detours exist) - there will be no error - we process this task in LdrpDrainWorkQueue().

                  在工作線程回調中執行:

                  In a worker thread callback, this is executed:

                  void LdrpWorkCallback()
                  {
                      if (LdrpDetourExist) return;
                  
                      EnterCriticalSection(&LdrpWorkQueueLock);
                  
                      PLIST_ENTRY Entry = RemoveEntryList(&LdrpWorkQueue);
                  
                      if (Entry != &LdrpWorkQueue)
                      {
                          ++LdrpWorkInProgress;
                          LdrpUpdateStatistics()
                      }
                  
                      LeaveCriticalSection(&LdrpWorkQueueLock);
                  
                      if (Entry != &LdrpWorkQueue)
                      {
                          LdrpProcessWork(CONTAINING_RECORD(Entry, LDRP_LOAD_CONTEXT, WorkQueueListEntry), FALSE);
                      }
                  }
                  

                  我們只需從 LdrpWorkQueue 中彈出一個條目,將其轉換為 LDRP_LOAD_CONTEXT* (CONTAINING_RECORD(Entry, LDRP_LOAD_CONTEXT, WorkQueueListEntry)) 并調用 <代碼>void LdrpProcessWork(LDRP_LOAD_CONTEXT* LoadContext, BOOLEAN LoadOwner).

                  We simply popup an entry from LdrpWorkQueue, convert it to LDRP_LOAD_CONTEXT* (CONTAINING_RECORD(Entry, LDRP_LOAD_CONTEXT, WorkQueueListEntry)) and call void LdrpProcessWork(LDRP_LOAD_CONTEXT* LoadContext, BOOLEAN LoadOwner).

                  void LdrpProcessWork(LDRP_LOAD_CONTEXT* ctx, BOOLEAN LoadOwner)通常調用 LdrpSnapModule(LoadContext) 并在最后執行下一個代碼:

                  void LdrpProcessWork(LDRP_LOAD_CONTEXT* ctx, BOOLEAN LoadOwner) in general calls LdrpSnapModule(LoadContext) and in the end the next code is executed:

                  if (!LoadOwner)
                  {
                      EnterCriticalSection(&LdrpWorkQueueLock);
                      BOOLEAN bSetEvent = --LdrpWorkInProgress == 1 && IsListEmpty(&LdrpWorkQueue);
                      LeaveCriticalSection(&LdrpWorkQueueLock);
                      if (bSetEvent) ZwSetEvent(LdrpWorkCompleteEvent, 0);
                  }
                  

                  所以,如果我們不是LoadOwner(在工作線程中),我們遞減LdrpWorkInProgress,如果LdrpWorkQueue 為空,則信號LdrpWorkCompleteEvent(LoadOwner 可以等待).

                  So, if we are not LoadOwner (in worked thread), we decrement LdrpWorkInProgress, and if LdrpWorkQueue is empty then signal LdrpWorkCompleteEvent (LoadOwner can wait on it).

                  最后,LdrpDrainWorkQueue()LoadOwner(主線程)被調用到drain".工作隊列.它可以彈出并直接執行由 LdrpQueueWork() 推送到 LdrpWorkQueue 的任務,但不會被工作線程彈出或因為并行加載器被禁用(在這種情況下LdrpQueueWork() 也推送 LDRP_LOAD_CONTEXT 但并沒有真正將工作發布到工作線程),最后等待(如果需要)LdrpWorkCompleteEventLdrpLoadCompleteEvent 事件.

                  and finally, LdrpDrainWorkQueue() is called from LoadOwner (primary thread) to "drain" the WorkQueue. It can possible pop and directly execute tasks pushed to LdrpWorkQueue by LdrpQueueWork(), and yet is not popped by worked threads or because parallel loader is disabled (in this case LdrpQueueWork() also push LDRP_LOAD_CONTEXT but not really post work to worked thread), and finally wait (if need) on LdrpWorkCompleteEvent or LdrpLoadCompleteEvent events.

                  enum DRAIN_TASK {
                      WaitLoadComplete, WaitWorkComplete
                  };
                  
                  void LdrpDrainWorkQueue(DRAIN_TASK task)
                  {
                      BOOLEAN LoadOwner = FALSE;
                  
                      HANDLE hEvent = task ? LdrpWorkCompleteEvent : LdrpLoadCompleteEvent;
                  
                      for(;;)
                      {
                          PLIST_ENTRY Entry;
                  
                          EnterCriticalSection(&LdrpWorkQueueLock);
                  
                          if (LdrpDetourExist && task == WaitLoadComplete)
                          {
                              if (!LdrpWorkInProgress)
                              {
                                  LdrpWorkInProgress = 1;
                                  LoadOwner = TRUE;
                              }
                              Entry = &LdrpWorkQueue;
                          }
                          else
                          {
                              Entry = RemoveHeadList(&LdrpWorkQueue);
                  
                              if (Entry == &LdrpWorkQueue)
                              {
                                  if (!LdrpWorkInProgress)
                                  {
                                      LdrpWorkInProgress = 1;
                                      LoadOwner = TRUE;
                                  }
                              }
                              else
                              {
                                  if (!LdrpDetourExist)
                                  {
                                      ++LdrpWorkInProgress;
                                  }
                                  LdrpUpdateStatistics();
                              }
                          }
                          LeaveCriticalSection(&LdrpWorkQueueLock);
                  
                          if (LoadOwner)
                          {
                              NtCurrentTeb()->LoadOwner = 1;
                              return;
                          }
                  
                          if (Entry != &LdrpWorkQueue)
                          {
                              LdrpProcessWork(CONTAINING_RECORD(Entry, LDRP_LOAD_CONTEXT, WorkQueueListEntry), FALSE);
                          }
                          else
                          {
                              ZwWaitForSingleObject(hEvent, 0, 0);
                          }
                      }
                  }
                  

                • void LdrpDropLastInProgressCount()
                  {
                    NtCurrentTeb()->LoadOwner = 0;
                    EnterCriticalSection(&LdrpWorkQueueLock);
                    LdrpWorkInProgress = 0;
                    LeaveCriticalSection(&LdrpWorkQueueLock);
                    ZwSetEvent(LdrpLoadCompleteEvent);
                  }
                  

                • 這篇關于為什么在 Win32 控制臺應用程序啟動時會出現三個意外的工作線程?的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網!

                  【網站聲明】本站部分內容來源于互聯網,旨在幫助大家更快的解決問題,如果有圖片或者內容侵犯了您的權益,請聯系我們刪除處理,感謝您的支持!

                  相關文檔推薦

                  In what ways do C++ exceptions slow down code when there are no exceptions thown?(當沒有異常時,C++ 異常會以何種方式減慢代碼速度?)
                  Why catch an exception as reference-to-const?(為什么要捕獲異常作為對 const 的引用?)
                  When and how should I use exception handling?(我應該何時以及如何使用異常處理?)
                  Scope of exception object in C++(C++中異常對象的范圍)
                  Catching exceptions from a constructor#39;s initializer list(從構造函數的初始化列表中捕獲異常)
                  Difference between C++03 throw() specifier C++11 noexcept(C++03 throw() 說明符 C++11 noexcept 之間的區別)
                    <bdo id='S1H1M'></bdo><ul id='S1H1M'></ul>

                      1. <legend id='S1H1M'><style id='S1H1M'><dir id='S1H1M'><q id='S1H1M'></q></dir></style></legend>
                        <i id='S1H1M'><tr id='S1H1M'><dt id='S1H1M'><q id='S1H1M'><span id='S1H1M'><b id='S1H1M'><form id='S1H1M'><ins id='S1H1M'></ins><ul id='S1H1M'></ul><sub id='S1H1M'></sub></form><legend id='S1H1M'></legend><bdo id='S1H1M'><pre id='S1H1M'><center id='S1H1M'></center></pre></bdo></b><th id='S1H1M'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='S1H1M'><tfoot id='S1H1M'></tfoot><dl id='S1H1M'><fieldset id='S1H1M'></fieldset></dl></div>

                            <small id='S1H1M'></small><noframes id='S1H1M'>

                            <tfoot id='S1H1M'></tfoot>
                              <tbody id='S1H1M'></tbody>

                          • 主站蜘蛛池模板: 亚洲高清久久 | 久久精品国产亚洲夜色av网站 | 成人欧美一区二区三区视频xxx | chengrenzaixian| 久久久久亚洲精品 | 国产一区在线视频 | 国产一区二区精品在线观看 | 久99久视频 | 91免费在线看 | 51ⅴ精品国产91久久久久久 | 久久成人免费 | 国产精品精品视频 | 亚洲精品视频在线播放 | 中文字幕在线一区 | 久久国产成人 | 国产一区二区三区久久久久久久久 | 精品少妇一区二区三区日产乱码 | 久久精品国产亚洲一区二区三区 | 9porny九色视频自拍 | 淫片一级国产 | 久久大陆 | 日韩视频在线一区二区 | 欧美日韩亚 | 毛片站 | 亚洲精品视频一区 | 四虎影院免费在线 | 黄色网址大全在线观看 | 爱爱视频在线观看 | 拍真实国产伦偷精品 | av官网在线 | 久久久久久av | 中文字幕亚洲欧美日韩在线不卡 | 色接久久 | 天天躁日日躁狠狠很躁 | 狠狠色综合网站久久久久久久 | 国产成年人视频 | 综合色影院 | gogo肉体亚洲高清在线视 | 999www视频免费观看 | 久久伊人精品一区二区三区 | 欧美一级小视频 |