久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

    <bdo id='x7DTk'></bdo><ul id='x7DTk'></ul>

    1. <small id='x7DTk'></small><noframes id='x7DTk'>

      <legend id='x7DTk'><style id='x7DTk'><dir id='x7DTk'><q id='x7DTk'></q></dir></style></legend>

      1. <i id='x7DTk'><tr id='x7DTk'><dt id='x7DTk'><q id='x7DTk'><span id='x7DTk'><b id='x7DTk'><form id='x7DTk'><ins id='x7DTk'></ins><ul id='x7DTk'></ul><sub id='x7DTk'></sub></form><legend id='x7DTk'></legend><bdo id='x7DTk'><pre id='x7DTk'><center id='x7DTk'></center></pre></bdo></b><th id='x7DTk'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='x7DTk'><tfoot id='x7DTk'></tfoot><dl id='x7DTk'><fieldset id='x7DTk'></fieldset></dl></div>
      2. <tfoot id='x7DTk'></tfoot>
      3. 最廣泛使用的 C++ 向量/矩陣數學/線性代數庫是什

        What are the most widely used C++ vector/matrix math/linear algebra libraries, and their cost and benefit tradeoffs?(最廣泛使用的 C++ 向量/矩陣數學/線性代數庫是什么,以及它們的成本和收益權衡?) - IT屋-程序員

        <i id='b2DAU'><tr id='b2DAU'><dt id='b2DAU'><q id='b2DAU'><span id='b2DAU'><b id='b2DAU'><form id='b2DAU'><ins id='b2DAU'></ins><ul id='b2DAU'></ul><sub id='b2DAU'></sub></form><legend id='b2DAU'></legend><bdo id='b2DAU'><pre id='b2DAU'><center id='b2DAU'></center></pre></bdo></b><th id='b2DAU'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='b2DAU'><tfoot id='b2DAU'></tfoot><dl id='b2DAU'><fieldset id='b2DAU'></fieldset></dl></div>
            <tbody id='b2DAU'></tbody>
          • <bdo id='b2DAU'></bdo><ul id='b2DAU'></ul>
              <legend id='b2DAU'><style id='b2DAU'><dir id='b2DAU'><q id='b2DAU'></q></dir></style></legend>

              <small id='b2DAU'></small><noframes id='b2DAU'>

            • <tfoot id='b2DAU'></tfoot>

                  本文介紹了最廣泛使用的 C++ 向量/矩陣數學/線性代數庫是什么,以及它們的成本和收益權衡?的處理方法,對大家解決問題具有一定的參考價值,需要的朋友們下面隨著小編來一起學習吧!

                  問題描述

                  似乎許多項目慢慢地需要做矩陣數學,并陷入首先構建一些向量類然后慢慢添加功能的陷阱,直到他們被發現構建一個半途而廢的自定義線性代數庫,并取決于在上面.

                  It seems that many projects slowly come upon a need to do matrix math, and fall into the trap of first building some vector classes and slowly adding in functionality until they get caught building a half-assed custom linear algebra library, and depending on it.

                  我想避免這種情況,同時不依賴于一些切線相關的庫(例如 OpenCV、OpenSceneGraph).

                  I'd like to avoid that while not building in a dependence on some tangentially related library (e.g. OpenCV, OpenSceneGraph).

                  什么是常用的矩陣數學/線性代數庫,為什么要決定使用一個而不是另一個?是否有任何人因某種原因被建議不要使用?我專門在幾何/時間上下文*(2,3,4 Dim)* 中使用它,但將來可能會使用更高維度的數據.

                  What are the commonly used matrix math/linear algebra libraries out there, and why would decide to use one over another? Are there any that would be advised against using for some reason? I am specifically using this in a geometric/time context*(2,3,4 Dim)* but may be using higher dimensional data in the future.

                  我正在尋找以下方面的差異:API、速度、內存使用、廣度/完整性、狹窄性/特異性、可擴展性和/或成熟度/穩定性.

                  I'm looking for differences with respect to any of: API, speed, memory use, breadth/completeness, narrowness/specificness, extensibility, and/or maturity/stability.

                  我最終使用了 Eigen3,對此我非常滿意.

                  I ended up using Eigen3 which I am extremely happy with.

                  推薦答案

                  有不少項目已經在 通用圖形工具包.那里的 GMTL 很好 - 它非常小,非常實用,并且被廣泛使用,非??煽?OpenSG、VRJuggler 和其他項目都已轉而使用它,而不是他們自己的手卷垂直器/矩陣數學.

                  There are quite a few projects that have settled on the Generic Graphics Toolkit for this. The GMTL in there is nice - it's quite small, very functional, and been used widely enough to be very reliable. OpenSG, VRJuggler, and other projects have all switched to using this instead of their own hand-rolled vertor/matrix math.

                  我發現它非常好 - 它通過模板完成所有工作,因此非常靈活且速度非常快.

                  I've found it quite nice - it does everything via templates, so it's very flexible, and very fast.

                  在評論討論和編輯之后,我想我會提供更多關于特定實現的優點和缺點的信息,以及為什么你可以根據你的情況選擇另一個.

                  After the comments discussion, and edits, I thought I'd throw out some more information about the benefits and downsides to specific implementations, and why you might choose one over the other, given your situation.

                  GMTL -

                  優點:簡單的 API,專為圖形引擎設計.包括許多其他包中沒有的面向渲染的基本類型(例如平面、AABB、具有多重插值的四元數等).極低的內存開銷,相當快,易于使用.

                  Benefits: Simple API, specifically designed for graphics engines. Includes many primitive types geared towards rendering (such as planes, AABB, quatenrions with multiple interpolation, etc) that aren't in any other packages. Very low memory overhead, quite fast, easy to use.

                  缺點:API 非常專注于渲染和圖形.不包括通用 (NxM) 矩陣、矩陣分解和求解等,因為這些超出了傳統圖形/幾何應用程序的范圍.

                  Downsides: API is very focused specifically on rendering and graphics. Doesn't include general purpose (NxM) matrices, matrix decomposition and solving, etc, since these are outside the realm of traditional graphics/geometry applications.

                  本征 -

                  優點:干凈的 API,相當容易使用.包括帶有四元數和幾何變換的幾何模塊.低內存開銷.高性能大型 NxN 矩陣和其他通用數學例程的完整求解.

                  Benefits: Clean API, fairly easy to use. Includes a Geometry module with quaternions and geometric transforms. Low memory overhead. Full, highly performant solving of large NxN matrices and other general purpose mathematical routines.

                  缺點:可能比您想要的范圍更大(?).與 GMTL 相比,幾何/渲染特定例程更少(即:歐拉角定義等).

                  Downsides: May be a bit larger scope than you are wanting (?). Fewer geometric/rendering specific routines when compared to GMTL (ie: Euler angle definitions, etc).

                  IMSL -

                  優點:非常完整的數字庫.非常非???據說是最快的求解器).迄今為止最大、最完整的數學 API.商業支持、成熟且穩定.

                  Benefits: Very complete numeric library. Very, very fast (supposedly the fastest solver). By far the largest, most complete mathematical API. Commercially supported, mature, and stable.

                  缺點:成本 - 不便宜.很少有幾何/渲染特定的方法,因此您需要在其線性代數類之上推出自己的方法.

                  Downsides: Cost - not inexpensive. Very few geometric/rendering specific methods, so you'll need to roll your own on top of their linear algebra classes.

                  NT2 -

                  優點:如果您習慣了 MATLAB,則提供更熟悉的語法.為大型矩陣等提供完整的分解和求解.

                  Benefits: Provides syntax that is more familiar if you're used to MATLAB. Provides full decomposition and solving for large matrices, etc.

                  缺點:數學,不專注于渲染.性能可能不如 Eigen.

                  Downsides: Mathematical, not rendering focused. Probably not as performant as Eigen.

                  LAPACK -

                  優點:非常穩定、經過驗證的算法.好久沒來了完整的矩陣求解等.很多晦澀數學的選項.

                  Benefits: Very stable, proven algorithms. Been around for a long time. Complete matrix solving, etc. Many options for obscure mathematics.

                  缺點:在某些情況下性能不高.從 Fortran 移植,使用奇怪的 API.

                  Downsides: Not as highly performant in some cases. Ported from Fortran, with odd API for usage.

                  就我個人而言,這歸結為一個問題 - 您打算如何使用它.如果您只關注渲染和圖形,我喜歡 Generic Graphics Toolkit,因為它表現良好,并且支持許多開箱即用的有用渲染操作,而無需您自己實現.如果您需要通用矩陣求解(即:大矩陣的 SVD 或 LU 分解),我會選擇 Eigen,因為它處理了這個問題,提供了一些幾何運算,并且在處理大型矩陣解決方案時非常高效.您可能需要編寫更多自己的圖形/幾何操作(在其矩陣/向量之上),但這并不可怕.

                  Personally, for me, it comes down to a single question - how are you planning to use this. If you're focus is just on rendering and graphics, I like Generic Graphics Toolkit, since it performs well, and supports many useful rendering operations out of the box without having to implement your own. If you need general purpose matrix solving (ie: SVD or LU decomposition of large matrices), I'd go with Eigen, since it handles that, provides some geometric operations, and is very performant with large matrix solutions. You may need to write more of your own graphics/geometric operations (on top of their matrices/vectors), but that's not horrible.

                  這篇關于最廣泛使用的 C++ 向量/矩陣數學/線性代數庫是什么,以及它們的成本和收益權衡?的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網!

                  【網站聲明】本站部分內容來源于互聯網,旨在幫助大家更快的解決問題,如果有圖片或者內容侵犯了您的權益,請聯系我們刪除處理,感謝您的支持!

                  相關文檔推薦

                  In what ways do C++ exceptions slow down code when there are no exceptions thown?(當沒有異常時,C++ 異常會以何種方式減慢代碼速度?)
                  Why catch an exception as reference-to-const?(為什么要捕獲異常作為對 const 的引用?)
                  When and how should I use exception handling?(我應該何時以及如何使用異常處理?)
                  Scope of exception object in C++(C++中異常對象的范圍)
                  Catching exceptions from a constructor#39;s initializer list(從構造函數的初始化列表中捕獲異常)
                  Difference between C++03 throw() specifier C++11 noexcept(C++03 throw() 說明符 C++11 noexcept 之間的區別)
                  <tfoot id='wFjSA'></tfoot>
                    <tbody id='wFjSA'></tbody>

                    <i id='wFjSA'><tr id='wFjSA'><dt id='wFjSA'><q id='wFjSA'><span id='wFjSA'><b id='wFjSA'><form id='wFjSA'><ins id='wFjSA'></ins><ul id='wFjSA'></ul><sub id='wFjSA'></sub></form><legend id='wFjSA'></legend><bdo id='wFjSA'><pre id='wFjSA'><center id='wFjSA'></center></pre></bdo></b><th id='wFjSA'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='wFjSA'><tfoot id='wFjSA'></tfoot><dl id='wFjSA'><fieldset id='wFjSA'></fieldset></dl></div>
                    <legend id='wFjSA'><style id='wFjSA'><dir id='wFjSA'><q id='wFjSA'></q></dir></style></legend>
                  • <small id='wFjSA'></small><noframes id='wFjSA'>

                      <bdo id='wFjSA'></bdo><ul id='wFjSA'></ul>

                            主站蜘蛛池模板: 91麻豆精品国产91久久久久久 | 男人阁久久| 91久久网站| 精品免费国产视频 | 干一干操一操 | 免费成人高清在线视频 | 亚洲精品乱码久久久久v最新版 | 可以免费观看的av | 久久精品国产一区二区电影 | 精品美女在线观看视频在线观看 | 国产高清视频一区 | 99re热这里只有精品视频 | 精品国产欧美一区二区三区成人 | 欧美成人h版在线观看 | 精品视频一区二区 | 亚洲精品久久久久久国产精华液 | 最新国产视频 | 久久欧美高清二区三区 | 成人欧美一区二区三区白人 | 伊人网站在线 | 午夜影晥| 免费久久99精品国产婷婷六月 | 成人国产在线视频 | www.一级片 | 精品二三区 | 五月婷婷在线视频 | 欧美国产日韩成人 | 日韩欧美一二三区 | 亚洲美女网站 | 国产激情 | 国产精品久久久久影院色老大 | 久久免费国产 | www.成人久久 | 噜噜噜噜狠狠狠7777视频 | 国产高清视频一区二区 | 黑人一级黄色大片 | 国产精品一区二区免费看 | 亚洲精品成人 | 国产高清一区二区三区 | 二区中文| wwwxxx日本在线观看 |