久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

    <i id='9mgNT'><tr id='9mgNT'><dt id='9mgNT'><q id='9mgNT'><span id='9mgNT'><b id='9mgNT'><form id='9mgNT'><ins id='9mgNT'></ins><ul id='9mgNT'></ul><sub id='9mgNT'></sub></form><legend id='9mgNT'></legend><bdo id='9mgNT'><pre id='9mgNT'><center id='9mgNT'></center></pre></bdo></b><th id='9mgNT'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='9mgNT'><tfoot id='9mgNT'></tfoot><dl id='9mgNT'><fieldset id='9mgNT'></fieldset></dl></div>
  1. <small id='9mgNT'></small><noframes id='9mgNT'>

    <tfoot id='9mgNT'></tfoot>
  2. <legend id='9mgNT'><style id='9mgNT'><dir id='9mgNT'><q id='9mgNT'></q></dir></style></legend>

    • <bdo id='9mgNT'></bdo><ul id='9mgNT'></ul>
    1. 使用 multiprocessing.Manager.list 而不是真正的列表會

      Using multiprocessing.Manager.list instead of a real list makes the calculation take ages(使用 multiprocessing.Manager.list 而不是真正的列表會使計(jì)算花費(fèi)很長時間)

      <i id='qk9Lp'><tr id='qk9Lp'><dt id='qk9Lp'><q id='qk9Lp'><span id='qk9Lp'><b id='qk9Lp'><form id='qk9Lp'><ins id='qk9Lp'></ins><ul id='qk9Lp'></ul><sub id='qk9Lp'></sub></form><legend id='qk9Lp'></legend><bdo id='qk9Lp'><pre id='qk9Lp'><center id='qk9Lp'></center></pre></bdo></b><th id='qk9Lp'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='qk9Lp'><tfoot id='qk9Lp'></tfoot><dl id='qk9Lp'><fieldset id='qk9Lp'></fieldset></dl></div>
      <tfoot id='qk9Lp'></tfoot>

          <bdo id='qk9Lp'></bdo><ul id='qk9Lp'></ul>
        • <small id='qk9Lp'></small><noframes id='qk9Lp'>

                <legend id='qk9Lp'><style id='qk9Lp'><dir id='qk9Lp'><q id='qk9Lp'></q></dir></style></legend>
                  <tbody id='qk9Lp'></tbody>
                本文介紹了使用 multiprocessing.Manager.list 而不是真正的列表會使計(jì)算花費(fèi)很長時間的處理方法,對大家解決問題具有一定的參考價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)吧!

                問題描述

                限時送ChatGPT賬號..

                我想從這個例子開始嘗試使用 multiprocessing 的不同方式:

                I wanted to try different ways of using multiprocessing starting with this example:

                $ cat multi_bad.py 
                import multiprocessing as mp
                from time import sleep
                from random import randint
                
                def f(l, t):
                #   sleep(30)
                    return sum(x < t for x in l)
                
                if __name__ == '__main__':
                    l = [randint(1, 1000) for _ in range(25000)]
                    t = [randint(1, 1000) for _ in range(4)]
                #   sleep(15)
                    pool = mp.Pool(processes=4)
                    result = pool.starmap_async(f, [(l, x) for x in t])
                    print(result.get())
                

                這里,l 是一個列表,當(dāng)產(chǎn)生 4 個進(jìn)程時會被復(fù)制 4 次.為了避免這種情況,文檔頁面提供了使用隊(duì)列、共享數(shù)組或使用 multiprocessing.Manager 創(chuàng)建的代理對象.對于最后一個,我改變了l的定義:

                Here, l is a list that gets copied 4 times when 4 processes are spawned. To avoid that, the documentation page offers using queues, shared arrays or proxy objects created using multiprocessing.Manager. For the last one, I changed the definition of l:

                $ diff multi_bad.py multi_good.py 
                10c10,11
                <     l = [randint(1, 1000) for _ in range(25000)]
                ---
                >     man = mp.Manager()
                >     l = man.list([randint(1, 1000) for _ in range(25000)])
                

                結(jié)果看起來仍然正確,但是執(zhí)行時間急劇增加,以至于我認(rèn)為我做錯了什么:

                The results still look correct, but the execution time has increased so dramatically that I think I'm doing something wrong:

                $ time python multi_bad.py 
                [17867, 11103, 2021, 17918]
                
                real    0m0.247s
                user    0m0.183s
                sys 0m0.010s
                
                $ time python multi_good.py 
                [3609, 20277, 7799, 24262]
                
                real    0m15.108s
                user    0m28.092s
                sys 0m6.320s
                

                文檔確實(shí)說這種方式比共享數(shù)組慢,但這感覺不對.我也不確定如何對此進(jìn)行分析以獲取有關(guān)正在發(fā)生的事情的更多信息.我錯過了什么嗎?

                The docs do say that this way is slower than shared arrays, but this just feels wrong. I'm also not sure how I can profile this to get more information on what's going on. Am I missing something?

                附:使用共享數(shù)組,我得到的時間低于 0.25 秒.

                P.S. With shared arrays I get times below 0.25s.

                附言這是在 Linux 和 Python 3.3 上.

                P.P.S. This is on Linux and Python 3.3.

                推薦答案

                Linux 使用 copy-當(dāng)子進(jìn)程被 os.forked 時,on-write.演示:

                Linux uses copy-on-write when subprocesses are os.forked. To demonstrate:

                import multiprocessing as mp
                import numpy as np
                import logging
                import os
                
                logger = mp.log_to_stderr(logging.WARNING)
                
                def free_memory():
                    total = 0
                    with open('/proc/meminfo', 'r') as f:
                        for line in f:
                            line = line.strip()
                            if any(line.startswith(field) for field in ('MemFree', 'Buffers', 'Cached')):
                                field, amount, unit = line.split()
                                amount = int(amount)
                                if unit != 'kB':
                                    raise ValueError(
                                        'Unknown unit {u!r} in /proc/meminfo'.format(u = unit))
                                total += amount
                    return total
                
                def worker(i):
                    x = data[i,:].sum()    # Exercise access to data
                    logger.warn('Free memory: {m}'.format(m = free_memory()))
                
                def main():
                    procs = [mp.Process(target = worker, args = (i, )) for i in range(4)]
                    for proc in procs:
                        proc.start()
                    for proc in procs:
                        proc.join()
                
                logger.warn('Initial free: {m}'.format(m = free_memory()))
                N = 15000
                data = np.ones((N,N))
                logger.warn('After allocating data: {m}'.format(m = free_memory()))
                
                if __name__ == '__main__':
                    main()
                

                產(chǎn)生了

                [WARNING/MainProcess] Initial free: 2522340
                [WARNING/MainProcess] After allocating data: 763248
                [WARNING/Process-1] Free memory: 760852
                [WARNING/Process-2] Free memory: 757652
                [WARNING/Process-3] Free memory: 757264
                [WARNING/Process-4] Free memory: 756760
                

                這表明最初大約有 2.5GB 的可用內(nèi)存.在分配 15000x15000 的 float64 數(shù)組后,有 763248 KB 可用空間.這大致是有道理的,因?yàn)?15000**2*8 字節(jié) = 1.8GB 并且內(nèi)存下降,2.5GB - 0.763248GB 也大約是 1.8GB.

                This shows that initially there was roughly 2.5GB of free memory. After allocating a 15000x15000 array of float64s, there was 763248 KB free. This roughly makes sense since 15000**2*8 bytes = 1.8GB and the drop in memory, 2.5GB - 0.763248GB is also roughly 1.8GB.

                現(xiàn)在每個進(jìn)程生成后,可用內(nèi)存再次報(bào)告為 ~750MB.可用內(nèi)存沒有顯著減少,因此我認(rèn)為系統(tǒng)必須使用寫時復(fù)制.

                Now after each process is spawned, the free memory is again reported to be ~750MB. There is no significant decrease in free memory, so I conclude the system must be using copy-on-write.

                結(jié)論:如果您不需要修改數(shù)據(jù),在 __main__ 模塊的全局級別定義它是一種方便且(至少在 Linux 上)內(nèi)存友好的方式來共享它子進(jìn)程.

                Conclusion: If you do not need to modify the data, defining it at the global level of the __main__ module is a convenient and (at least on Linux) memory-friendly way to share it among subprocesses.

                這篇關(guān)于使用 multiprocessing.Manager.list 而不是真正的列表會使計(jì)算花費(fèi)很長時間的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網(wǎng)!

                【網(wǎng)站聲明】本站部分內(nèi)容來源于互聯(lián)網(wǎng),旨在幫助大家更快的解決問題,如果有圖片或者內(nèi)容侵犯了您的權(quán)益,請聯(lián)系我們刪除處理,感謝您的支持!

                相關(guān)文檔推薦

                What exactly is Python multiprocessing Module#39;s .join() Method Doing?(Python 多處理模塊的 .join() 方法到底在做什么?)
                Passing multiple parameters to pool.map() function in Python(在 Python 中將多個參數(shù)傳遞給 pool.map() 函數(shù))
                multiprocessing.pool.MaybeEncodingError: #39;TypeError(quot;cannot serialize #39;_io.BufferedReader#39; objectquot;,)#39;(multiprocessing.pool.MaybeEncodingError: TypeError(cannot serialize _io.BufferedReader object,)) - IT屋-程序員軟件開
                Python Multiprocess Pool. How to exit the script when one of the worker process determines no more work needs to be done?(Python 多進(jìn)程池.當(dāng)其中一個工作進(jìn)程確定不再需要完成工作時,如何退出腳本?) - IT屋-程序員
                How do you pass a Queue reference to a function managed by pool.map_async()?(如何將隊(duì)列引用傳遞給 pool.map_async() 管理的函數(shù)?)
                yet another confusion with multiprocessing error, #39;module#39; object has no attribute #39;f#39;(與多處理錯誤的另一個混淆,“模塊對象沒有屬性“f)

                      <bdo id='6L11K'></bdo><ul id='6L11K'></ul>
                      <legend id='6L11K'><style id='6L11K'><dir id='6L11K'><q id='6L11K'></q></dir></style></legend>

                      <small id='6L11K'></small><noframes id='6L11K'>

                      <i id='6L11K'><tr id='6L11K'><dt id='6L11K'><q id='6L11K'><span id='6L11K'><b id='6L11K'><form id='6L11K'><ins id='6L11K'></ins><ul id='6L11K'></ul><sub id='6L11K'></sub></form><legend id='6L11K'></legend><bdo id='6L11K'><pre id='6L11K'><center id='6L11K'></center></pre></bdo></b><th id='6L11K'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='6L11K'><tfoot id='6L11K'></tfoot><dl id='6L11K'><fieldset id='6L11K'></fieldset></dl></div>
                        • <tfoot id='6L11K'></tfoot>

                            <tbody id='6L11K'></tbody>
                        • 主站蜘蛛池模板: 欧美一级黄 | 欧美在线 | 色婷婷av一区二区三区软件 | 成人视屏在线观看 | av一区二区在线观看 | 欧美8一10sex性hd | 中文av在线播放 | 99久久婷婷 | 中国美女撒尿txxxxx视频 | 91电影在线播放 | 日韩在线欧美 | 亚洲在线一区二区 | 亚州午夜精品 | 亚洲人成网站777色婷婷 | 91精品国产91久久久久久最新 | 精品视频在线免费观看 | 日韩欧美综合 | 国产一区久久精品 | 日韩在线视频一区二区三区 | 亚洲高清在线观看 | 成人免费看黄网站在线观看 | 9久久 | 国产精品久久久久久中文字 | 欧美高清成人 | 国产一级片av | 国产欧美日韩在线观看 | 久草热视频 | 国产精品久久久久久久久久久久冷 | 国产精品亚洲片在线播放 | 九九久久精品 | 久久久久国产一区二区三区四区 | 人人爽日日躁夜夜躁尤物 | 黑人久久 | 尤物在线| 亚洲精品久久久久久久久久吃药 | 精一区二区 | 精品国产18久久久久久二百 | 久久九精品| 亚洲国产aⅴ成人精品无吗 欧美激情欧美激情在线五月 | 中文字幕日韩一区 | 毛片软件|