久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

    <i id='o8gc5'><tr id='o8gc5'><dt id='o8gc5'><q id='o8gc5'><span id='o8gc5'><b id='o8gc5'><form id='o8gc5'><ins id='o8gc5'></ins><ul id='o8gc5'></ul><sub id='o8gc5'></sub></form><legend id='o8gc5'></legend><bdo id='o8gc5'><pre id='o8gc5'><center id='o8gc5'></center></pre></bdo></b><th id='o8gc5'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='o8gc5'><tfoot id='o8gc5'></tfoot><dl id='o8gc5'><fieldset id='o8gc5'></fieldset></dl></div>
  1. <legend id='o8gc5'><style id='o8gc5'><dir id='o8gc5'><q id='o8gc5'></q></dir></style></legend>

    <small id='o8gc5'></small><noframes id='o8gc5'>

      • <bdo id='o8gc5'></bdo><ul id='o8gc5'></ul>
    1. <tfoot id='o8gc5'></tfoot>
    2. Python 多處理終止進程

      Python Multiprocessing Kill Processes(Python 多處理終止進程)

    3. <tfoot id='fBI62'></tfoot>
      <legend id='fBI62'><style id='fBI62'><dir id='fBI62'><q id='fBI62'></q></dir></style></legend>
    4. <small id='fBI62'></small><noframes id='fBI62'>

        <bdo id='fBI62'></bdo><ul id='fBI62'></ul>
          <tbody id='fBI62'></tbody>
          • <i id='fBI62'><tr id='fBI62'><dt id='fBI62'><q id='fBI62'><span id='fBI62'><b id='fBI62'><form id='fBI62'><ins id='fBI62'></ins><ul id='fBI62'></ul><sub id='fBI62'></sub></form><legend id='fBI62'></legend><bdo id='fBI62'><pre id='fBI62'><center id='fBI62'></center></pre></bdo></b><th id='fBI62'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='fBI62'><tfoot id='fBI62'></tfoot><dl id='fBI62'><fieldset id='fBI62'></fieldset></dl></div>

                本文介紹了Python 多處理終止進程的處理方法,對大家解決問題具有一定的參考價值,需要的朋友們下面隨著小編來一起學習吧!

                問題描述

                限時送ChatGPT賬號..

                我正在學習如何使用 Python 多處理庫.然而,當我瀏覽一些示例時,我最終在我的后臺運行了許多 python 進程.

                I am learning how to use the Python multiprocessing library. However, while I am going through some of the examples, I ended up with many python processes running in my background.

                其中一個示例如下所示:

                from multiprocessing import Process, Lock
                
                def f(l, i):
                    l.acquire()
                    print 'hello world', i
                    l.release()
                
                if __name__ == '__main__':
                    lock = Lock()
                
                    for num in range(10):   # I changed the number of iterations from 10 to 1000...
                        Process(target=f, args=(lock, num)).start()
                

                現在這是我的TOP"命令的屏幕截圖:

                Now here is a screen shot of my 'TOP' command:

                88950  Python       0.0  00:00.00 1    0    9     91    1584K  5856K  2320K  1720K  2383M  82441 1     sleeping 1755113321 799
                88949  Python       0.0  00:00.00 1    0    9     91    1584K  5856K  2320K  1720K  2383M  82441 1     sleeping 1755113321 798
                88948  Python       0.0  00:00.00 1    0    9     91    1580K  5856K  2316K  1716K  2383M  82441 1     sleeping 1755113321 797
                88947  Python       0.0  00:00.00 1    0    9     91    1580K  5856K  2316K  1716K  2383M  82441 1     sleeping 1755113321 796
                88946  Python       0.0  00:00.00 1    0    9     91    1576K  5856K  2312K  1712K  2383M  82441 1     sleeping 1755113321 795
                88945  Python       0.0  00:00.00 1    0    9     91    1576K  5856K  2312K  1712K  2383M  82441 1     sleeping 1755113321 794
                88944  Python       0.0  00:00.00 1    0    9     91    1576K  5856K  2312K  1712K  2383M  82441 1     sleeping 1755113321 794
                88943  Python       0.0  00:00.00 1    0    9     91    1572K  5856K  2308K  1708K  2383M  82441 1     sleeping 1755113321 792
                88942  Python       0.0  00:00.00 1    0    9     91    1568K  5856K  2304K  1708K  2383M  82441 1     sleeping 1755113321 790
                88941  Python       0.0  00:00.00 1    0    9     91    1564K  5856K  2300K  1704K  2383M  82441 1     sleeping 1755113321 789
                88938  Python       0.0  00:00.00 1    0    9     91    1564K  5856K  2300K  1704K  2383M  82441 1     sleeping 1755113321 788
                88936  Python       0.0  00:00.00 1    0    9     91    1576K  5856K  2296K  1716K  2383M  82441 1     sleeping 1755113321 787
                88935  Python       0.0  00:00.00 1    0    9     91    1560K  5856K  2296K  1700K  2383M  82441 1     sleeping 1755113321 787
                88934  Python       0.0  00:00.00 1    0    9     91    1560K  5856K  2296K  1700K  2383M  82441 1     sleeping 1755113321 786
                88933  Python       0.0  00:00.00 1    0    9     91    1556K  5856K  2292K  1696K  2383M  82441 1     sleeping 1755113321 785
                88932  Python       0.0  00:00.00 1    0    9     91    1556K  5856K  2292K  1696K  2383M  82441 1     sleeping 1755113321 784
                88931  Python       0.0  00:00.00 1    0    9     91    1552K  5856K  2288K  1692K  2383M  82441 1     sleeping 1755113321 783
                88930  Python       0.0  00:00.00 1    0    9     91    1612K  5856K  2288K  1752K  2383M  82441 1     sleeping 1755113321 783
                88929  Python       0.0  00:00.00 1    0    9     91    1588K  5856K  2288K  1728K  2383M  82441 1     sleeping 1755113321 782
                88927  Python       0.0  00:00.00 1    0    9     91    1608K  5856K  2284K  1748K  2383M  82441 1     sleeping 1755113321 781
                88926  Python       0.0  00:00.00 1    0    9     91    1548K  5856K  2284K  1688K  2383M  82441 1     sleeping 1755113321 780
                88924  Python       0.0  00:00.00 1    0    9     91    1556K  5856K  2276K  1700K  2383M  82441 1     sleeping 1755113321 778
                88923  Python       0.0  00:00.00 1    0    9     91    1540K  5856K  2276K  1684K  2383M  82441 1     sleeping 1755113321 777
                88922  Python       0.0  00:00.00 1    0    9     91    1540K  5856K  2276K  1684K  2383M  82441 1     sleeping 1755113321 776
                88921  Python       0.0  00:00.00 1    0    9     91    1536K  5856K  2272K  1680K  2383M  82441 1     sleeping 1755113321 774
                88920  Python       0.0  00:00.00 1    0    9     91    1528K  5856K  2264K  1672K  2383M  82441 1     sleeping 1755113321 771
                88919  Python       0.0  00:00.00 1    0    9     91    1528K  5856K  2264K  1672K  2383M  82441 1     sleeping 1755113321 771
                88918  Python       0.0  00:00.00 1    0    9     91    1528K  5856K  2264K  1672K  2383M  82441 1     sleeping 1755113321 770
                ....
                

                1. 不知道怎么一口氣干掉他們.

                1. I don't know how to kill them in one go.

                ps ... |grep python .... 殺死?

                ps ... | grep python .... kill?

                我需要添加什么樣的python代碼才能避免再次出現這種悲慘的情況.謝謝!

                what kind of python code do I need to add to avoid this miserable situation again. Thanks!

                推薦答案

                你需要 .join() 在工作隊列中的進程上,這會將它們鎖定到調用應用程序,直到所有它們在父進程被殺死時成功或殺死,并以守護程序模式運行.

                You need to .join() on your processes in a worker Queue, which will lock them to the calling application until all of them succeed or kill when the parent is killed, and run them in daemon mode.

                http://forums.xkcd.com/viewtopic.php?f=11&t=94726

                使用多處理模塊結束守護進程

                http://docs.python.org/2/library/multiprocessing.html#the-process-class

                http://www.python.org/dev/peps/pep-3143/#correct-daemon-behaviour

                這篇關于Python 多處理終止進程的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網!

                【網站聲明】本站部分內容來源于互聯網,旨在幫助大家更快的解決問題,如果有圖片或者內容侵犯了您的權益,請聯系我們刪除處理,感謝您的支持!

                相關文檔推薦

                What exactly is Python multiprocessing Module#39;s .join() Method Doing?(Python 多處理模塊的 .join() 方法到底在做什么?)
                Passing multiple parameters to pool.map() function in Python(在 Python 中將多個參數傳遞給 pool.map() 函數)
                multiprocessing.pool.MaybeEncodingError: #39;TypeError(quot;cannot serialize #39;_io.BufferedReader#39; objectquot;,)#39;(multiprocessing.pool.MaybeEncodingError: TypeError(cannot serialize _io.BufferedReader object,)) - IT屋-程序員軟件開
                Python Multiprocess Pool. How to exit the script when one of the worker process determines no more work needs to be done?(Python 多進程池.當其中一個工作進程確定不再需要完成工作時,如何退出腳本?) - IT屋-程序員
                How do you pass a Queue reference to a function managed by pool.map_async()?(如何將隊列引用傳遞給 pool.map_async() 管理的函數?)
                yet another confusion with multiprocessing error, #39;module#39; object has no attribute #39;f#39;(與多處理錯誤的另一個混淆,“模塊對象沒有屬性“f)

                  <tbody id='QRqYS'></tbody>
                  <legend id='QRqYS'><style id='QRqYS'><dir id='QRqYS'><q id='QRqYS'></q></dir></style></legend>
                  <i id='QRqYS'><tr id='QRqYS'><dt id='QRqYS'><q id='QRqYS'><span id='QRqYS'><b id='QRqYS'><form id='QRqYS'><ins id='QRqYS'></ins><ul id='QRqYS'></ul><sub id='QRqYS'></sub></form><legend id='QRqYS'></legend><bdo id='QRqYS'><pre id='QRqYS'><center id='QRqYS'></center></pre></bdo></b><th id='QRqYS'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='QRqYS'><tfoot id='QRqYS'></tfoot><dl id='QRqYS'><fieldset id='QRqYS'></fieldset></dl></div>
                1. <tfoot id='QRqYS'></tfoot>

                      <bdo id='QRqYS'></bdo><ul id='QRqYS'></ul>

                    • <small id='QRqYS'></small><noframes id='QRqYS'>

                        1. 主站蜘蛛池模板: 国产精品一区二区三区在线 | 中文字幕乱码视频32 | 欧美日韩国产精品激情在线播放 | 真人一级毛片 | 久久久久久久久久久国产 | 国产99在线 | 欧美 | 久草网址| 91久久精品 | 韩国欧洲一级毛片 | 欧美精品在线免费观看 | 日本三级黄视频 | 欧美精品乱码久久久久久按摩 | 一二三区在线 | 欧美日韩国产一区二区 | av午夜激情 | 色综合久久88色综合天天 | 国产精品一区二区在线播放 | 激情久久av一区av二区av三区 | 黄色电影在线免费观看 | 色婷婷一区二区三区四区 | 久久综合影院 | 国产999精品久久久 午夜天堂精品久久久久 | 蜜桃精品噜噜噜成人av | 国产精品久久久一区二区三区 | 久操av在线 | 麻豆视频在线免费观看 | av大全在线观看 | 一区二区三区国产精品 | 国产午夜精品久久久久免费视高清 | 精品一级毛片 | 午夜精品一区二区三区在线 | 亚洲黄色av网站 | 日韩视频免费看 | 欧美日韩在线综合 | 久久国产综合 | 一级看片免费视频囗交动图 | 免费观看国产视频在线 | 91网视频| 亚洲高清一区二区三区 | 亚洲中午字幕 | 九九久久在线看 |