久久久久久久av_日韩在线中文_看一级毛片视频_日本精品二区_成人深夜福利视频_武道仙尊动漫在线观看

    <i id='ox7Zh'><tr id='ox7Zh'><dt id='ox7Zh'><q id='ox7Zh'><span id='ox7Zh'><b id='ox7Zh'><form id='ox7Zh'><ins id='ox7Zh'></ins><ul id='ox7Zh'></ul><sub id='ox7Zh'></sub></form><legend id='ox7Zh'></legend><bdo id='ox7Zh'><pre id='ox7Zh'><center id='ox7Zh'></center></pre></bdo></b><th id='ox7Zh'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='ox7Zh'><tfoot id='ox7Zh'></tfoot><dl id='ox7Zh'><fieldset id='ox7Zh'></fieldset></dl></div>
    • <bdo id='ox7Zh'></bdo><ul id='ox7Zh'></ul>
  • <small id='ox7Zh'></small><noframes id='ox7Zh'>

      1. <tfoot id='ox7Zh'></tfoot>

      2. <legend id='ox7Zh'><style id='ox7Zh'><dir id='ox7Zh'><q id='ox7Zh'></q></dir></style></legend>

      3. 如何將歐拉角轉(zhuǎn)換為方向向量?

        How to convert Euler angles to directional vector?(如何將歐拉角轉(zhuǎn)換為方向向量?)

        <small id='OUyc9'></small><noframes id='OUyc9'>

        <i id='OUyc9'><tr id='OUyc9'><dt id='OUyc9'><q id='OUyc9'><span id='OUyc9'><b id='OUyc9'><form id='OUyc9'><ins id='OUyc9'></ins><ul id='OUyc9'></ul><sub id='OUyc9'></sub></form><legend id='OUyc9'></legend><bdo id='OUyc9'><pre id='OUyc9'><center id='OUyc9'></center></pre></bdo></b><th id='OUyc9'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='OUyc9'><tfoot id='OUyc9'></tfoot><dl id='OUyc9'><fieldset id='OUyc9'></fieldset></dl></div>

              <bdo id='OUyc9'></bdo><ul id='OUyc9'></ul>

                  <tfoot id='OUyc9'></tfoot><legend id='OUyc9'><style id='OUyc9'><dir id='OUyc9'><q id='OUyc9'></q></dir></style></legend>
                    <tbody id='OUyc9'></tbody>

                  本文介紹了如何將歐拉角轉(zhuǎn)換為方向向量?的處理方法,對大家解決問題具有一定的參考價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)吧!

                  問題描述

                  我有俯仰角、滾轉(zhuǎn)角和偏航角.我如何將這些轉(zhuǎn)換為方向向量?

                  如果你能向我展示這個的四元數(shù)和/或矩陣表示會特別酷!

                  解決方案

                  不幸的是,關(guān)于如何定義這些東西有不同的約定(并且滾轉(zhuǎn)、俯仰、偏航與歐拉角并不完全相同),因此您將有小心點(diǎn).

                  如果我們將pitch=0定義為水平(z=0),yaw定義為從x軸逆時針,那么方向向量將為

                  <前>x = cos(yaw)*cos(pitch)y = sin(yaw)*cos(pitch)z = sin(音高)

                  注意我沒有用過roll;這是方向單位向量,它不指定姿態(tài).編寫一個旋轉(zhuǎn)矩陣很容易,它可以將物體帶入飛行物體的框架中(如果你想知道,比如說,左翼尖指向哪里),但首先指定約定確實(shí)是一個好主意.你能告訴我們更多關(guān)于這個問題的信息嗎?

                  (兩年半來我一直想回到這個問題.)

                  對于完整的旋轉(zhuǎn)矩陣,如果我們使用上面的約定并且我們希望向量先偏航,然后是俯仰,然后是滾動,為了獲得世界坐標(biāo)系中的最終坐標(biāo),我們必須在世界坐標(biāo)系中應(yīng)用旋轉(zhuǎn)矩陣逆序.

                  第一卷:

                  <代碼>|1 0 0 ||0 cos(roll) -sin(roll) ||0 sin(roll) cos(roll) |

                  然后投球:

                  <代碼>|cos(pitch) 0 -sin(pitch) ||0 1 0 ||sin(pitch) 0 cos(pitch) |

                  然后偏航:

                  <代碼>|cos(yaw) -sin(yaw) 0 ||sin(yaw) cos(yaw) 0 ||0 0 1 |

                  將它們組合起來,總的旋轉(zhuǎn)矩陣為:

                  <代碼>|cos(yaw)cos(pitch) -cos(yaw)sin(pitch)sin(roll)-sin(yaw)cos(roll) -cos(yaw)sin(pitch)cos(roll)+sin(yaw)sin(卷)||sin(yaw)cos(pitch) -sin(yaw)sin(pitch)sin(roll)+cos(yaw)cos(roll) -sin(yaw)sin(pitch)cos(roll)-cos(yaw)sin(卷)||sin(pitch) cos(pitch)sin(roll) cos(pitch)sin(roll)|

                  因此對于從 x 軸開始的單位向量,最終坐標(biāo)將為:

                  x = cos(yaw)cos(pitch)y = sin(yaw)cos(pitch)z = sin(音高)

                  對于從 y 軸(左翼尖)開始的單位向量,最終坐標(biāo)將為:

                  x = -cos(yaw)sin(pitch)sin(roll)-sin(yaw)cos(roll)y = -sin(yaw)sin(pitch)sin(roll)+cos(yaw)cos(roll)z = cos(pitch)sin(roll)

                  I have pitch, roll, and yaw angles. How would I convert these to a directional vector?

                  It'd be especially cool if you can show me a quaternion and/or matrix representation of this!

                  解決方案

                  Unfortunately there are different conventions on how to define these things (and roll, pitch, yaw are not quite the same as Euler angles), so you'll have to be careful.

                  If we define pitch=0 as horizontal (z=0) and yaw as counter-clockwise from the x axis, then the direction vector will be

                  x = cos(yaw)*cos(pitch)
                  y = sin(yaw)*cos(pitch)
                  z = sin(pitch)
                  

                  Note that I haven't used roll; this is direction unit vector, it doesn't specify attitude. It's easy enough to write a rotation matrix that will carry things into the frame of the flying object (if you want to know, say, where the left wing-tip is pointing), but it's really a good idea to specify the conventions first. Can you tell us more about the problem?

                  EDIT: (I've been meaning to get back to this question for two and a half years.)

                  For the full rotation matrix, if we use the convention above and we want the vector to yaw first, then pitch, then roll, in order to get the final coordinates in the world coordinate frame we must apply the rotation matrices in the reverse order.

                  First roll:

                  | 1    0          0      |
                  | 0 cos(roll) -sin(roll) |
                  | 0 sin(roll)  cos(roll) |
                  

                  then pitch:

                  | cos(pitch) 0 -sin(pitch) |
                  |     0      1      0      |
                  | sin(pitch) 0  cos(pitch) |
                  

                  then yaw:

                  | cos(yaw) -sin(yaw) 0 |
                  | sin(yaw)  cos(yaw) 0 |
                  |    0         0     1 |
                  

                  Combine them, and the total rotation matrix is:

                  | cos(yaw)cos(pitch) -cos(yaw)sin(pitch)sin(roll)-sin(yaw)cos(roll) -cos(yaw)sin(pitch)cos(roll)+sin(yaw)sin(roll)|
                  | sin(yaw)cos(pitch) -sin(yaw)sin(pitch)sin(roll)+cos(yaw)cos(roll) -sin(yaw)sin(pitch)cos(roll)-cos(yaw)sin(roll)|
                  | sin(pitch)          cos(pitch)sin(roll)                            cos(pitch)sin(roll)|
                  

                  So for a unit vector that starts at the x axis, the final coordinates will be:

                  x = cos(yaw)cos(pitch)
                  y = sin(yaw)cos(pitch)
                  z = sin(pitch)
                  

                  And for the unit vector that starts at the y axis (the left wing-tip), the final coordinates will be:

                  x = -cos(yaw)sin(pitch)sin(roll)-sin(yaw)cos(roll)
                  y = -sin(yaw)sin(pitch)sin(roll)+cos(yaw)cos(roll)
                  z =  cos(pitch)sin(roll)
                  

                  這篇關(guān)于如何將歐拉角轉(zhuǎn)換為方向向量?的文章就介紹到這了,希望我們推薦的答案對大家有所幫助,也希望大家多多支持html5模板網(wǎng)!

                  【網(wǎng)站聲明】本站部分內(nèi)容來源于互聯(lián)網(wǎng),旨在幫助大家更快的解決問題,如果有圖片或者內(nèi)容侵犯了您的權(quán)益,請聯(lián)系我們刪除處理,感謝您的支持!

                  相關(guān)文檔推薦

                  In what ways do C++ exceptions slow down code when there are no exceptions thown?(當(dāng)沒有異常時,C++ 異常會以何種方式減慢代碼速度?)
                  Why catch an exception as reference-to-const?(為什么要捕獲異常作為對 const 的引用?)
                  When and how should I use exception handling?(我應(yīng)該何時以及如何使用異常處理?)
                  Scope of exception object in C++(C++中異常對象的范圍)
                  Catching exceptions from a constructor#39;s initializer list(從構(gòu)造函數(shù)的初始化列表中捕獲異常)
                  Difference between C++03 throw() specifier C++11 noexcept(C++03 throw() 說明符 C++11 noexcept 之間的區(qū)別)
                  <tfoot id='mXjWJ'></tfoot>
                  <i id='mXjWJ'><tr id='mXjWJ'><dt id='mXjWJ'><q id='mXjWJ'><span id='mXjWJ'><b id='mXjWJ'><form id='mXjWJ'><ins id='mXjWJ'></ins><ul id='mXjWJ'></ul><sub id='mXjWJ'></sub></form><legend id='mXjWJ'></legend><bdo id='mXjWJ'><pre id='mXjWJ'><center id='mXjWJ'></center></pre></bdo></b><th id='mXjWJ'></th></span></q></dt></tr></i><div class="qwawimqqmiuu" id='mXjWJ'><tfoot id='mXjWJ'></tfoot><dl id='mXjWJ'><fieldset id='mXjWJ'></fieldset></dl></div>

                        <bdo id='mXjWJ'></bdo><ul id='mXjWJ'></ul>
                        • <small id='mXjWJ'></small><noframes id='mXjWJ'>

                            <legend id='mXjWJ'><style id='mXjWJ'><dir id='mXjWJ'><q id='mXjWJ'></q></dir></style></legend>
                              <tbody id='mXjWJ'></tbody>

                            主站蜘蛛池模板: 中文字幕在线观看 | 午夜资源 | 久久精品视频播放 | 欧美日韩中文字幕在线播放 | 精品亚洲一区二区三区 | 国产成人高清视频 | 九九av| 99热在线观看精品 | 一区二区免费 | 最新日韩欧美 | 国产精品射| 日韩中文一区二区三区 | 国产精品入口 | 嫩草视频在线 | 国产亚洲一区二区精品 | 国产毛片av | 亚洲网址| 久久久久久久久久久久久91 | 欧美日韩一区二区视频在线观看 | 国产视频1区 | 国产精品中文 | 日韩欧美三级 | 国产精品免费一区二区三区四区 | 天天干夜夜操 | 中文字幕一区二区三区乱码图片 | www久久| 激情一区二区三区 | 中文字幕亚洲一区 | 国产高清在线精品 | 欧美色综合天天久久综合精品 | 日本三级网站在线 | 在线免费观看黄色av | 草久在线 | 亚洲精品日韩欧美 | 一区二区三区视频播放 | 婷婷福利视频导航 | 最新av中文字幕 | 麻豆国产一区二区三区四区 | 天天干国产 | 国产精品毛片无码 | 精品久久不卡 |